A weight-based approach to the measurement of the interaction among criteria in the framework of aggregation by the bipolar Choquet integral

In the context of aggregation, the Choquet integral arises as a natural generalization of the weighted arithmetic mean. In their seminal work on bi-capacities, Grabisch and Labreuche have recently proposed an extension of the Choquet integral adapted to the situation where the values to be aggregated lie on a bipolar scale. In such a framework, they have derived generalizations of the Shapley value and of the Shapley interaction index that can be used to apprehend the main behavioral characteristics of the aggregation. Founding our approach on the intuitive notion of weight of a criterion, we propose alternative definitions of importance and interaction indices that may be more easily interpretable and we study their properties.

[1]  Jean-Luc Marichal,et al.  Aggregation operators for multicriteria decision aid , 1998 .

[2]  Christophe Labreuche,et al.  The Choquet integral for the aggregation of interval scales in multicriteria decision making , 2003, Fuzzy Sets Syst..

[3]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[4]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[5]  Jean-Luc Marichal,et al.  Entropy of bi-capacities , 2007, EUSFLAT Conf..

[6]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[7]  Christophe Labreuche,et al.  A general construction for unipolar and bipolar interpolative aggregation , 2005, EUSFLAT Conf..

[8]  J. M. Bilbao,et al.  Cooperative Games on Combinatorial Structures , 2000 .

[9]  Michel Grabisch,et al.  New axiomatizations of the Shapley interaction index for bi-capacities , 2005, EUSFLAT Conf..

[10]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[11]  Dan S. Felsenthal,et al.  Ternary voting games , 1997, Int. J. Game Theory.

[12]  L. Shapley A Value for n-person Games , 1988 .

[13]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[14]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[15]  Michel Grabisch,et al.  An axiomatization of the Shapley value and interaction index for games on lattices , 2004 .

[16]  Jean-Luc Marichal,et al.  Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices , 2006, Games Econ. Behav..

[17]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[18]  Michel Grabisch,et al.  An axiomatic approach to the concept of interaction among players in cooperative games , 1999, Int. J. Game Theory.

[19]  Michel Grabisch,et al.  Equivalent Representations of Set Functions , 2000, Math. Oper. Res..

[20]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[21]  Jean-Luc Marichal,et al.  An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria , 2000, IEEE Trans. Fuzzy Syst..

[22]  Christophe Labreuche,et al.  On the extension of pseudo-Boolean functions for the aggregation of interacting criteria , 2003, Eur. J. Oper. Res..

[23]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[24]  Jesús Mario Bilbao,et al.  Biprobabilistic values for bicooperative games , 2008, Discret. Appl. Math..

[25]  Toshiaki Murofushi,et al.  Some Characterizations of k-Monotonicity Through the Bipolar Möbius Transform in Bi-Capacities , 2005, J. Adv. Comput. Intell. Intell. Informatics.

[26]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[27]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[28]  Christophe Labreuche,et al.  Generalized Choquet-like aggregation functions for handling bipolar scales , 2006, Eur. J. Oper. Res..

[29]  M. Grabisch,et al.  The symmetric and asymmetric Choquet integrals on finite spaces for decision making , 2002 .

[30]  D. Denneberg Non-additive measure and integral , 1994 .

[31]  G. Choquet Theory of capacities , 1954 .

[32]  Philippe Vincke,et al.  Multicriteria Decision-Aid , 1992 .