Optically Modulated Multiband Terahertz Perfect Absorber

Development of tunable, dynamic, and broad bandwidth metamaterial designs is a keystone objective for metamaterials research, necessary for the future viability of metamaterial optics and devices across the electromagnetic spectrum. Yet, overcoming the inherently localized, narrow bandwidth, and static response of resonant metamaterials continues to be a challenging endeavor. Resonant perfect absorbers have flourished as one of the most promising metamaterial devices with applications ranging from power harvesting to terahertz imaging. Here, an optically modulated resonant perfect absorber is presented. Utilizing photo-excited free carriers in silicon pads placed in the capacitive gaps of split ring resonators, a dynamically modulated perfect absorber is designed and fabricated to operate in reflection. Large modulation depth (38% and 91%) in two absorption bands (with 97% and 92% peak absorption) is demonstrated, which correspond to the LC (0.7 THz) and dipole (1.1 THz) modes of the split ring resonators.

[1]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[2]  Costas M. Soukoulis,et al.  Nonplanar chiral metamaterials with negative index , 2009 .

[3]  Yijun Feng,et al.  DUAL BAND SWITCHABLE METAMATERIAL ELECTROMAGNETIC ABSORBER , 2010 .

[4]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[5]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[6]  Willie J Padilla,et al.  Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices. , 2007, Optics letters.

[7]  Richard M. Swanson,et al.  Modelling of minority-carrier transport in heavily doped silicon emitters , 1987 .

[8]  Zeyu Zhao,et al.  Realizing near-perfect absorption at visible frequencies. , 2009, Optics express.

[9]  Yixian Qian,et al.  Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array , 2013 .

[10]  Willie J Padilla,et al.  Liquid Crystal Metamaterial Absorber Spatial Light Modulator for THz Applications , 2014 .

[11]  Willie J Padilla,et al.  A metamaterial absorber for the terahertz regime: design, fabrication and characterization. , 2008, Optics express.

[12]  Michael Wraback,et al.  Optically Tunable Terahertz Metamaterials on Highly Flexible Substrates , 2013, IEEE Transactions on Terahertz Science and Technology.

[13]  Guo-Qiang Lo,et al.  Resonance Switchable Metamaterials Using MEMS Fabrications , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Willie J. Padilla,et al.  Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials , 2013 .

[15]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[16]  Andrew C. Strikwerda,et al.  Three-dimensional broadband tunable terahertz metamaterials , 2013, Physical Review B.

[17]  T. Bourouina,et al.  Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy , 2012, Nature Communications.

[18]  J. Mock,et al.  Enhanced diffraction from a grating on the surface of a negative-index metamaterial. , 2004, Physical review letters.

[19]  Willie J. Padilla,et al.  Electrically resonant terahertz metamaterials: Theoretical and experimental investigations , 2007 .

[20]  Ranjan Singh,et al.  Tuning the resonance in high-temperature superconducting terahertz metamaterials. , 2010, Physical review letters.

[21]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[22]  Daniel R. Grischkowsky,et al.  Optical and electronic properties of doped silicon from 0.1 to 2 THz , 1990 .

[23]  Xing Zhu,et al.  Tunable wide-angle plasmonic perfect absorber at visible frequencies , 2012 .

[24]  T. Cui,et al.  Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber , 2012 .

[25]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[26]  G. Shvets,et al.  Wide-angle infrared absorber based on a negative-index plasmonic metamaterial , 2008, 0807.1312.

[27]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[28]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[29]  Willie J Padilla,et al.  Infrared spatial and frequency selective metamaterial with near-unity absorbance. , 2010, Physical review letters.

[30]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[31]  Harald Giessen,et al.  Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. , 2011, Nano letters.

[32]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[33]  Ekmel Ozbay,et al.  Optically implemented broadband blueshift switch in the terahertz regime. , 2011, Physical review letters.

[34]  D. Schurig,et al.  The asymmetric lossy near-perfect lens , 2002 .

[35]  Junqiao Wang,et al.  Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. , 2012, Optics express.

[36]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[37]  Xin Zhang,et al.  Frequency tunable terahertz metamaterials using broadside coupled split-ring resonators , 2011 .

[38]  David R. Smith,et al.  Terahertz compressive imaging with metamaterial spatial light modulators , 2014, Nature Photonics.

[39]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[40]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[41]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.