Implementation Study of Two Verifiable DelayFunctions

Proof of Work is a prevalent mechanism to prove investment of time in blockchain projects. However, the use of massive parallelism and specialized hardware gives an unfair advantage to a small portion of nodes and raises environmental and economical concerns. In this paper, we provide an implementation study of two Verifiable Delay Functions, a new cryptographic primitive achieving Proof of Work goals in an unparallelizable way. We provide simulation results and an optimization based on a multiexponentiation algorithm. 2012 ACM Subject Classification Computing methodologies → Simulation evaluation

[1]  Jan Camenisch,et al.  Efficient Computation Modulo a Shared Secret with Application to the Generation of Shared Safe-Prime Products , 2002, CRYPTO.

[2]  Yehuda Lindell,et al.  Fast Distributed RSA Key Generation for Semi-Honest and Malicious Adversaries , 2018, IACR Cryptol. ePrint Arch..

[3]  Kiamal Pekmestzi,et al.  Complex number multipliers , 1989 .

[4]  Elaine B. Barker Recommendation for Key Management - Part 1 General , 2014 .

[5]  Luca De Feo,et al.  Verifiable Delay Functions from Supersingular Isogenies and Pairings , 2019, IACR Cryptol. ePrint Arch..

[6]  Stefan Dziembowski,et al.  Proofs of Space , 2015, CRYPTO.

[7]  Adam Back,et al.  Hashcash - A Denial of Service Counter-Measure , 2002 .

[8]  Proof of Replication , 2017 .

[9]  Clifford C. Cocks Split Knowledge Generation of RSA Parameters , 1997, IMACC.

[10]  Joseph Bonneau,et al.  Scaling Proof-of-Replication for Filecoin Mining , 2018 .

[11]  Ivan Damgård,et al.  Efficient, Robust and Constant-Round Distributed RSA Key Generation , 2010, TCC.

[12]  Alistair A. Young,et al.  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2017, MICCAI 2017.

[13]  Graham A. Jullien,et al.  Complexity and Fast Algorithms for Multiexponentiations , 2000, IEEE Trans. Computers.

[14]  Nir Bitansky,et al.  Time-Lock Puzzles from Randomized Encodings , 2016, IACR Cryptol. ePrint Arch..

[15]  Mike Burmester,et al.  Weaknesses in Shared RSA Key Generation Protocols , 1999, IMACC.

[16]  Arjen K. Lenstra,et al.  Trustworthy public randomness with sloth, unicorn, and trx , 2017, Int. J. Appl. Cryptogr..

[17]  M. Rabin Probabilistic algorithm for testing primality , 1980 .

[18]  Matthew K. Franklin,et al.  Efficient generation of shared RSA keys , 2001, JACM.

[19]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[20]  Dan Boneh,et al.  Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[21]  Benjamin Wesolowski,et al.  Efficient Verifiable Delay Functions , 2019, Journal of Cryptology.

[22]  Krzysztof Pietrzak,et al.  Simple Verifiable Delay Functions , 2018, IACR Cryptol. ePrint Arch..

[23]  S. Popov The Tangle , 2015 .