Anisotropy variations in the continental crust of Central – East Java region, Indonesia from local shear wave splitting

[1]  N. Puspito,et al.  Double-difference earthquake relocation using waveform cross-correlation in Central and East Java, Indonesia , 2023, Geoscience Letters.

[2]  N. Puspito,et al.  Seismic Imaging of Lithospheric Structure Beneath Central-East Java Region, Indonesia: Relation to Recent Earthquakes , 2022, Frontiers in Earth Science.

[3]  H. Hidayat,et al.  Travel Time Tomography to Delineate 3-D Regional Seismic Velocity Structure in the Banyumas Basin, Central Java, Indonesia, Using Dense Borehole Seismographic Stations , 2021, Frontiers in Earth Science.

[4]  C. Tape,et al.  Anisotropy Variations in the Alaska Subduction Zone Based on Shear‐Wave Splitting From Intraslab Earthquakes , 2021, Geochemistry, Geophysics, Geosystems.

[5]  L. Handayani,et al.  Determining the origin of volcanic rocks in the mélange complex of Karangsambung based on the electrical resistivity imaging , 2020, Island Arc.

[6]  N. Puspito,et al.  Lithospheric mantle anisotropy from local events beneath the Sunda–Banda arc transition and its geodynamic implications , 2020, Acta Geophysica.

[7]  R. Müller,et al.  A Global Data Set of Present‐Day Oceanic Crustal Age and Seafloor Spreading Parameters , 2020, Geochemistry, Geophysics, Geosystems.

[8]  Colin J. N. Wilson,et al.  Mapping Stress and Structure From Subducting Slab to Magmatic Rift: Crustal Seismic Anisotropy of the North Island, New Zealand , 2019, Geochemistry, Geophysics, Geosystems.

[9]  N. Rawlinson,et al.  Detailed seismic imaging of Merapi volcano, Indonesia, from local earthquake travel-time tomography , 2019, Journal of Asian Earth Sciences.

[10]  S. Vel,et al.  Modification of crustal seismic anisotropy by geological structures (“structural geometric anisotropy”) , 2019, Geosphere.

[11]  S. Widiyantoro,et al.  Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate , 2019, Journal of Geodynamics.

[12]  W. Suryanto,et al.  Velocity structure of the earthquake zone of the M6.3 Yogyakarta earthquake 2006 from a seismic tomography study , 2018, Geophysical Journal International.

[13]  P. Tregoning,et al.  The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning , 2017 .

[14]  Y. Aoki,et al.  Stress, strain rate and anisotropy in Kyushu, Japan , 2016 .

[15]  T. Iidaka,et al.  Stress state in the upper crust around the source region of the 1891 Nobi earthquake through shear wave polarization anisotropy , 2015, Earth, Planets and Space.

[16]  D. Zhao Multiscale Seismic Tomography , 2015 .

[17]  D. Natawidjaja,et al.  Seismic anisotropy in the Sumatra subduction zone , 2013 .

[18]  M. Savage,et al.  Seismic anisotropy and lithospheric deformation of the plate-boundary zone in South Island, New Zealand: inferences from local S-wave splitting , 2013 .

[19]  J. Wookey,et al.  Mantle flow in regions of complex tectonics: Insights from Indonesia , 2012 .

[20]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[21]  John Townend,et al.  Distinguishing between Stress-induced and Structural Anisotropy at Mount Ruapehu Volcano , 2011 .

[22]  Martha K. Savage,et al.  Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand , 2010 .

[23]  J. Wookey,et al.  Systematic variation in anisotropy beneath the mantle wedge in the Java–Sumatra subduction system from shear-wave splitting , 2010 .

[24]  Yasuhiro Yamada,et al.  Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry , 2009 .

[25]  T. Kato,et al.  CRUSTAL DEFORMATION STUDIES IN JAVA (INDONESIA) USING GPS , 2009 .

[26]  Sheila Peacock,et al.  A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation , 2008 .

[27]  H. Kopp,et al.  Joint inversion of active and passive seismic data in Central Java , 2007 .

[28]  H. Kopp,et al.  P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion , 2007 .

[29]  Lauro Chiaraluce,et al.  Space and time variations of crustal anisotropy during the 1997 Umbria—Marche, central Italy, seismic sequence , 2006 .

[30]  M. Di Bona,et al.  Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy) , 2006 .

[31]  M. Zoback,et al.  Mapping stress and structurally controlled crustal shear velocity anisotropy in California , 2006 .

[32]  M. Savage,et al.  Seismic Anisotropy Beneath Ruapehu Volcano: A Possible Eruption Forecasting Tool , 2004, Science.

[33]  M. van der Baan,et al.  Automation of Shear-Wave Splitting Measurements using Cluster Analysis , 2004 .

[34]  Yehuda Bock,et al.  Crustal motion in Indonesia from Global Positioning System measurements , 2003 .

[35]  Agust Gudmundsson,et al.  Indication of high pore-fluid pressures in a seismically-active fault zone , 2002 .

[36]  J. Nakajima,et al.  Three‐dimensional structure of Vp, Vs, and Vp/Vs beneath northeastern Japan: Implications for arc magmatism and fluids , 2001 .

[37]  K. Felzer,et al.  The 1994 Java tsunami earthquake: Slip over a subducting seamount , 2001 .

[38]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[39]  M. Savage Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? , 1999 .

[40]  M. Richards,et al.  The dynamics of Cenozoic and Mesozoic plate motions , 1998 .

[41]  P. Silver SEISMIC ANISOTROPY BENEATH THE CONTINENTS: Probing the Depths of Geology , 1996 .

[42]  D. Okaya,et al.  Crustal anisotropy in the vicinity of the Alpine fault zone , 1995 .

[43]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[44]  Stuart Crampin,et al.  The fracture criticality of crustal rocks , 1994 .

[45]  Paul G. Silver,et al.  Shear wave splitting and subcontinental mantle deformation , 1991 .

[46]  S. Kaneshima Origin of crustal anisotropy: Shear Wave splitting studies in Japan , 1990 .

[47]  W. Mccann,et al.  Seismic history and seismotectonics of the Sunda Arc , 1987 .

[48]  David C. Booth,et al.  Shear-wave polarizations near the North Anatolian Fault – II. Interpretation in terms of crack-induced anisotropy , 1985 .

[49]  John H. Woodhouse,et al.  Determination of earthquake source parameters from waveform data for studies of global and regional seismicity , 1981 .

[50]  T. Yudistira,et al.  Crustal anisotropy along the Sunda-Banda arc transition zone from shear wave splitting measurements , 2017 .

[51]  S. Dosso,et al.  Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia , 2012 .

[52]  Roger,et al.  Seismic anisotropy - the state of the art: I1 , 2006 .

[53]  A. Barber,et al.  Contrasting tectonic styles in the Neogene orogenic belts of Indonesia , 1996, Geological Society, London, Special Publications.

[54]  M. Untung,et al.  Gravity and geological studies in Jawa, Indonesia , 1978 .