Glaucoma Detection from Raw SD-OCT Volumes: A Novel Approach Focused on Spatial Dependencies

[1]  Valery Naranjo,et al.  Glaucoma Detection From Raw Circumpapillary OCT Images Using Fully Convolutional Neural Networks , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[2]  Hao Chen,et al.  Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning , 2020, Medical Image Anal..

[3]  Asifullah Khan,et al.  A survey of the recent architectures of deep convolutional neural networks , 2019, Artificial Intelligence Review.

[4]  Carol Y. Cheung,et al.  Detecting Glaucoma Using 3D Convolutional Neural Network of Raw SD-OCT Optic Nerve Scans , 2019, ArXiv.

[5]  An Ran Ran,et al.  Artificial intelligence deep learning algorithm for discriminating ungradable optical coherence tomography three-dimensional volumetric optic disc scans , 2019, Neurophotonics.

[6]  Suria S. Mannil,et al.  Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. , 2019, The Lancet. Digital health.

[7]  Hao Chen,et al.  Unifying Structure Analysis and Surrogate-driven Function Regression for Glaucoma OCT Image Screening , 2019, MICCAI.

[8]  Raphael Sznitman,et al.  Fused Detection of Retinal Biomarkers in OCT Volumes , 2019, MICCAI.

[9]  Paul Sajda,et al.  Enhancing the Accuracy of Glaucoma Detection from OCT Probability Maps using Convolutional Neural Networks , 2019, 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[10]  Alejandro F. Frangi,et al.  Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment , 2019, IEEE Transactions on Medical Imaging.

[11]  Hideo Yokota,et al.  Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images , 2019, Journal of healthcare engineering.

[12]  Felipe A. Medeiros,et al.  From Machine to Machine: An OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs , 2018, Ophthalmology.

[13]  Hiroshi Ishikawa,et al.  A feature agnostic approach for glaucoma detection in OCT volumes , 2018, PloS one.

[14]  Delia Cabrera DeBuc,et al.  Deep Learning based Retinal OCT Segmentation , 2018, Comput. Biol. Medicine.

[15]  Geraint Rees,et al.  Clinically applicable deep learning for diagnosis and referral in retinal disease , 2018, Nature Medicine.

[16]  Jiangtao Cui,et al.  Predicting the progression of ophthalmic disease based on slit-lamp images using a deep temporal sequence network , 2018, PloS one.

[17]  R. Ritch,et al.  Glaucoma – Authors' reply , 2018, The Lancet.

[18]  Sejong Oh,et al.  Development of machine learning models for diagnosis of glaucoma , 2017, PloS one.

[19]  Chong Wang,et al.  Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. , 2017, Biomedical optics express.

[20]  Mark D. McDonnell,et al.  Understanding Data Augmentation for Classification: When to Warp? , 2016, 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA).

[21]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Jae Y. Shin,et al.  Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? , 2016, IEEE transactions on medical imaging.

[23]  Matthew J. Hausknecht,et al.  Beyond short snippets: Deep networks for video classification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[25]  D. Hood,et al.  On improving the use of OCT imaging for detecting glaucomatous damage , 2014, British Journal of Ophthalmology.

[26]  Andrew W. Senior,et al.  Long short-term memory recurrent neural network architectures for large scale acoustic modeling , 2014, INTERSPEECH.

[27]  Gadi Wollstein,et al.  OCT for glaucoma diagnosis, screening and detection of glaucoma progression , 2013, British Journal of Ophthalmology.

[28]  Marcelo Dias,et al.  Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT , 2013, Journal of ophthalmology.

[29]  Lindsey S. Folio,et al.  Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection , 2013, PloS one.

[30]  Marcelo Dias,et al.  Sensitivity and Specificity of Machine Learning Classifiers and Spectral Domain OCT for the Diagnosis of Glaucoma , 2012, European journal of ophthalmology.

[31]  Anders Heijl,et al.  Machine learning classifiers for glaucoma diagnosis based on classification of retinal nerve fibre layer thickness parameters measured by Stratus OCT , 2010, Acta ophthalmologica.

[32]  F. Medeiros,et al.  Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. , 2009, Investigative ophthalmology & visual science.

[33]  J. Schmidhuber,et al.  A Novel Connectionist System for Unconstrained Handwriting Recognition , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Szymon Jaroszewicz,et al.  Efficient AUC Optimization for Classification , 2007, PKDD.

[35]  Pascale Massin,et al.  Automatic detection of microaneurysms in color fundus images , 2007, Medical Image Anal..

[36]  P. Khaw,et al.  Primary open-angle glaucoma , 2004, The Lancet.

[37]  J. Caprioli,et al.  Optical coherence tomography to detect and manage retinal disease and glaucoma. , 2004, American journal of ophthalmology.

[38]  C. Sinthanayothin,et al.  Automated detection of diabetic retinopathy on digital fundus images , 2002, Diabetic medicine : a journal of the British Diabetic Association.

[39]  J. G. O'shea,et al.  Glaucoma: Diagnosis and Management. , 1996, American family physician.

[40]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[41]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[42]  I. Scott,et al.  Expert agreement in evaluating the optic disc for glaucoma. , 1992, Ophthalmology.

[43]  P. Lichter Variability of expert observers in evaluating the optic disc. , 1976, Transactions of the American Ophthalmological Society.