Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene

Using first-principles calculations and non-equilibrium Green's function method, we investigate the ballistic thermal transport in single-layer phosphorene. A significant crystallographic orientation dependence of thermal conductance is observed, with room temperature thermal conductance along zigzag direction being 40 percent higher than that along armchair direction. Furthermore, we find that the thermal conductance anisotropy with the orientation can be tuned by applying strain. In particular, the zigzag-oriented thermal conductance is enhanced when a zigzag-oriented strain is applied but decreases when an armchair-oriented strain is applied; whereas the armchair-oriented thermal conductance always decreases when either a zigzag- or an armchair-oriented strain is applied. The present work suggests that the remarkable thermal transport anisotropy and its strain-modulated effect in single-layer phosphorene may be used for thermal management in phosphorene-based electronics and optoelectronic devices.

[1]  B. Gu,et al.  Intrinsic anisotropy of thermal conductance in graphene nanoribbons , 2009, 0910.3267.

[2]  M. Lumsden,et al.  Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory. , 2013, Physical review letters.

[3]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[4]  Zhen Zhu,et al.  Semiconducting layered blue phosphorus: a computational study. , 2014, Physical review letters.

[5]  Gang Zhang,et al.  Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons , 2013 .

[6]  Eric Pop,et al.  Imaging dissipation and hot spots in carbon nanotube network transistors , 2011 .

[7]  Masahito Yoshizawa,et al.  Thermal and elastic properties of black phosphorus , 1986 .

[8]  Eric Pop,et al.  Imaging, simulation, and electrostatic control of power dissipation in graphene devices. , 2010, Nano letters.

[9]  E. Pop,et al.  Thermal properties of graphene: Fundamentals and applications , 2012, 1301.6181.

[10]  Li Shi,et al.  Thermal transport in graphene , 2012 .

[11]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[12]  Xingao Gong,et al.  Thermal conductivity of graphene nanoribbons , 2009 .

[13]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[14]  Thermal transport in nanostructures , 2012, 1301.2409.

[15]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[16]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[17]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[18]  Ning Wei,et al.  Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility , 2011, Nanotechnology.

[19]  M. Kimura,et al.  Measurement of Ultrasound Velocity in the Single Crystal of Black Phosphorus up to 3.3 GPa Gas Pressure , 1991 .

[20]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[21]  Alexander A Balandin,et al.  Anomalous size dependence of the thermal conductivity of graphene ribbons. , 2012, Nano letters.

[22]  T. G. Worlton,et al.  Effect of pressure on bonding in black phosphorus , 1979 .

[23]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[24]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[25]  T. Fisher,et al.  Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method , 2007 .

[26]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[27]  Phonons in Twisted Bilayer Graphene , 2013, 1305.1349.

[28]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[29]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[30]  Yong-Wei Zhang,et al.  Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2 , 2013, 1312.3729.

[31]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[32]  Yong-Wei Zhang,et al.  Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering , 2013 .

[33]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[34]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  B. Yakobson,et al.  Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. , 2014, Nano letters.

[36]  Mikhail I. Katsnelson,et al.  Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus , 2014, 1404.0618.

[37]  Timothy S. Fisher,et al.  The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport , 2007 .

[38]  Timon Rabczuk,et al.  Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger-Weber parametrization, mechanical properties, and thermal conductivity , 2013, 1307.7072.

[39]  E. Pop,et al.  Scaling of high-field transport and localized heating in graphene transistors. , 2011, ACS nano.

[40]  A. Balandin,et al.  Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials , 2012 .

[41]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[42]  Gang Zhang,et al.  Phonon thermal conductivity of monolayer MoS2: A comparison with single layer graphene , 2014 .

[43]  Natalio Mingo,et al.  Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles , 2013 .

[44]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[45]  Satyaprakash Sahoo,et al.  Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS2 , 2013 .

[46]  X. Ruan,et al.  Tunable Thermal Transport and Thermal Rectification in Strained Graphene Nanoribbons , 2010, 1011.3033.

[47]  Pablo Jarillo-Herrero,et al.  Two-dimensional crystals: phosphorus joins the family. , 2014, Nature nanotechnology.

[48]  Kurt Maute,et al.  Strain effects on the thermal conductivity of nanostructures , 2010 .