New Type Design of the Triple-Band and Five-Band Metamaterial Absorbers at Terahertz Frequency

A new scheme to achieve a simple design of triple-band metamaterial absorber at terahertz frequency is presented. In this scheme, we employ a traditional sandwich structure, which is consisted of a metallic resonator and an appropriate thickness of the dielectric layer backed with an opaque metallic board, as the research object. Three strong but discrete resonance peaks with the narrow bandwidths and high absorptivities are realized. The combination of the dipolar resonance, LC (inductor-capacitor circuit) resonance, and the surface resonance of the metallic resonator determines the triple-band absorption. Numerical results also show that the frequencies of the three absorption bands and the number of the resonance peaks can be effectively tuned by adjusting or changing the geometric parameters of the metallic resonator. Moreover, we present a simple design of five-band terahertz absorber by further optimizing the sizes of the metallic elements in the top layer of the metamaterial. The design of the unit structures will assist in designing innovative absorbing devices for spectroscopy imaging, detection, and sensing.

[1]  D. Cumming,et al.  A terahertz polarization insensitive dual band metamaterial absorber. , 2011, Optics letters.

[2]  V. Lam,et al.  Perfect absorber metamaterials: Peak, multi-peak and broadband absorption , 2014 .

[3]  T. Cui,et al.  A bi-layered quad-band metamaterial absorber at terahertz frequencies , 2015 .

[4]  Abul K. Azad,et al.  Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers , 2010 .

[5]  S. Tretyakov,et al.  Perfect magnetic mirror and simple perfect absorber in the visible spectrum , 2015 .

[6]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[7]  Willie J. Padilla,et al.  A dual band terahertz metamaterial absorber , 2010 .

[8]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[9]  Zhen Tian,et al.  Terahertz superconductor metamaterial , 2010 .

[10]  T. Cui,et al.  A broadband terahertz absorber using multi-layer stacked bars , 2015 .

[11]  Ata Khalid,et al.  Polarization insensitive, broadband terahertz metamaterial absorber. , 2011, Optics letters.

[12]  D. R. Chowdhury,et al.  Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers , 2012, 1207.0540.

[13]  Minghai Liu,et al.  Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses , 2013 .

[14]  L. B. Lok,et al.  Polarization insensitive terahertz metamaterial absorber. , 2011, Optics letters.

[15]  S. Ramakrishna,et al.  Thermally induced nonlinear optical absorption in metamaterial perfect absorbers , 2015, 1501.00351.

[16]  Liang-yao Chen,et al.  Multi-band metamaterial absorber based on the arrangement of donut-type resonators. , 2013, Optics express.

[17]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[18]  Ying Liu,et al.  Multi-band metamaterial absorber made of multi-gap SRRs structure , 2012 .

[19]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[20]  Ben-Xin Wang,et al.  Frequency tunable metamaterial absorber at deep-subwavelength scale , 2015 .

[21]  Ben-Xin Wang Quad-Band Terahertz Metamaterial Absorber Based on the Combining of the Dipole and Quadrupole Resonances of Two SRRs , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  Xiaopeng Zhao,et al.  Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures. , 2015, Optics express.

[23]  Ben-Xin Wang,et al.  Design of a Five-Band Terahertz Absorber Based on Three Nested Split-Ring Resonators , 2016, IEEE Photonics Technology Letters.

[24]  Ben-Xin Wang,et al.  Five-Band Terahertz Metamaterial Absorber Based on a Four-Gap Comb Resonator , 2015, Journal of Lightwave Technology.

[25]  Yi He,et al.  Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. , 2015, Journal of agricultural and food chemistry.

[26]  Kai Chen,et al.  Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al–Al2O3–Al Trilayers , 2015 .

[27]  Tie Jun Cui,et al.  Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation , 2012 .

[28]  S. Maier,et al.  Active control of electromagnetically induced transparency analogue in terahertz metamaterials , 2012, Nature Communications.

[29]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[30]  Pei Ding,et al.  Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. , 2015, Optics express.

[31]  T. Cui,et al.  Polarization-independent wide-angle triple-band metamaterial absorber. , 2011, Optics express.

[32]  Afsaneh Saee Arezoomand,et al.  Independent polarization and multi-band THz absorber base on Jerusalem cross , 2015 .

[33]  Xiaopeng Zhao,et al.  Ultra-thin broadband metamaterial absorber , 2012 .

[34]  Koray Aydin,et al.  Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. , 2014, ACS nano.

[35]  Sergei A. Tretyakov,et al.  Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations , 2015 .

[36]  M. Aono,et al.  Infrared Aluminum Metamaterial Perfect Absorbers for Plasmon‐Enhanced Infrared Spectroscopy , 2015 .

[37]  Xiang Zhai,et al.  Frequency Continuous Tunable Terahertz Metamaterial Absorber , 2014, Journal of Lightwave Technology.

[38]  Yi He,et al.  A novel triangular silver nanoprisms-based surface plasmon resonance assay for free chlorine. , 2015, The Analyst.

[39]  Yanxia Cui,et al.  A thin film broadband absorber based on multi-sized nanoantennas , 2011 .

[40]  Junpeng Guo,et al.  Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures , 2013 .

[41]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[42]  Eleftherios N. Economou,et al.  Theoretical model of homogeneous metal–insulator–metal perfect multi-band absorbers for the visible spectrum , 2016 .

[43]  Michael Wraback,et al.  Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited] , 2016 .

[44]  Xianhui Zhang,et al.  Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles , 2016 .

[45]  Bong Jae Lee,et al.  Broadband Solar Thermal Absorber Based on Optical Metamaterials for High‐Temperature Applications , 2016 .

[46]  Nikolaos V. Kantartzis,et al.  Multi-band, highly absorbing, microwave metamaterial structures , 2014 .

[47]  Hu-Fan Song,et al.  One-pot Preparation of Creatinine-functionalized Gold Nanoparticles for Colorimetric Detection of Silver Ions , 2016, Plasmonics.

[48]  Yi He,et al.  Selective chemiluminescent sensor for detection of mercury(II) ions using non-aggregated luminol-capped gold nanoparticles , 2016 .

[49]  Yi He,et al.  Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion , 2016, Microchimica Acta.

[50]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[51]  M. P. Hokmabadi,et al.  Polarization-Dependent, Frequency-Selective THz Stereometamaterial Perfect Absorber , 2014 .

[52]  A. Urbas,et al.  A Large‐Area, Mushroom‐Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry–Perot Cavity Mechanism , 2015 .

[53]  R. Peng,et al.  Luminol functionalized gold nanoparticles as colorimetric and chemiluminescent probes for visual, label free, highly sensitive and selective detection of minocycline , 2014, Nanotechnology.

[54]  Igal Brener,et al.  Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. , 2008, Optics express.

[55]  Linhua Liu,et al.  Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. , 2015, Optics express.

[56]  Sailing He,et al.  Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime , 2010 .

[57]  Xiang Zhai,et al.  Theoretical Investigation of Broadband and Wide-Angle Terahertz Metamaterial Absorber , 2014, IEEE Photonics Technology Letters.

[58]  Kepeng Qiu,et al.  Mechanically stretchable and tunable metamaterial absorber , 2015 .

[59]  David R. Smith,et al.  Large‐Area Metasurface Perfect Absorbers from Visible to Near‐Infrared , 2015, Advanced materials.

[60]  Willie J Padilla,et al.  Role of surface electromagnetic waves in metamaterial absorbers. , 2016, Optics express.

[61]  Yanxia Cui,et al.  Plasmonic and metamaterial structures as electromagnetic absorbers , 2014, 1404.5695.

[62]  M. Amin,et al.  Tunable Salisbury Screen Absorber Using Square Lattice of Plasmonic Nanodisk , 2017, Plasmonics.

[63]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[64]  Xinbing Wang,et al.  Perfect narrow band absorber for sensing applications. , 2016, Optics express.

[65]  Weiqiang Ding,et al.  Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling. , 2014, Optics express.

[66]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[67]  Tian Sang,et al.  Simple design of novel triple-band terahertz metamaterial absorber for sensing application , 2016 .

[68]  Dunju Wang,et al.  The highly sensitive and facile colorimetric detection of the glycidyl azide polymer based on propargylamine functionalized gold nanoparticles using click chemistry. , 2015, Chemical communications.

[69]  Somak Bhattacharyya,et al.  Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band , 2013 .

[70]  Xiangyu Cao,et al.  Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. , 2015, Optics express.

[71]  Jie Ji,et al.  Dual-band tunable perfect metamaterial absorber in the THz range. , 2016, Optics express.