Polyhedral Methods in Numerical Algebraic Geometry
暂无分享,去创建一个
[1] Akiko Takeda,et al. Dynamic Enumeration of All Mixed Cells , 2007, Discret. Comput. Geom..
[2] David H. Bailey,et al. Integer relation detection , 2000, Computing in Science & Engineering.
[3] A. Morgan,et al. Coefficient-parameter polynomial continuation , 1989 .
[4] A. Jensen. Computing Gröbner Fans and Tropical Varieties in Gfan , 2008 .
[5] Teo Mora,et al. Local Parametrization of Space Curves at Singular Points , 1992 .
[6] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[7] Michael Shub,et al. Newton's method for overdetermined systems of equations , 2000, Math. Comput..
[8] Ronald Cools,et al. Mixed-volume computation by dynamic lifting applied to polynomial system solving , 1996, Discret. Comput. Geom..
[9] Jan Verschelde,et al. Toric Newton Method for Polynomial Homotopies , 2000, J. Symb. Comput..
[10] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[11] Shreeram S. Abhyankar,et al. Local Analytic Geometry , 1964 .
[12] Rekha R. Thomas. Lectures in Geometric Combinatorics , 2006, Student mathematical library.
[13] B. Teissier,et al. Cl\^oture int\'egrale des id\'eaux et \'equisingularit\'e , 2008, 0803.2369.
[14] Eecient Incremental Algorithms for the Sparse Resultant and the Mixed Volume , 1995 .
[15] Jan Verschelde,et al. Solving Polynomial Systems Equation by Equation , 2008 .
[16] Jan Verschelde,et al. Polyhedral end games for polynomial continuation , 2004, Numerical Algorithms.
[17] J. Maurice Rojas,et al. Toric intersection theory for affine root counting , 1996, math/9606215.
[18] Tsung-Lin Lee,et al. HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method , 2008, Computing.
[19] R. Moeckel,et al. Finiteness of relative equilibria of the four-body problem , 2006 .
[20] Gerhard Pfister,et al. Local analytic geometry - basic theory and applications , 2000, Advanced lectures in mathematics.
[21] Anders Nedergaard Jensen,et al. An algorithm for lifting points in a tropical variety , 2007, 0705.2441.
[22] A. G. Kushnirenko,et al. Newton polytopes and the Bezout theorem , 1976 .
[23] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[24] Tangan Gao,et al. Algorithm 846: MixedVol: a software package for mixed-volume computation , 2005, TOMS.
[25] J. McDonald. Fractional Power Series Solutions for Systems of Equations , 2002, Discret. Comput. Geom..
[26] Ariel Waissbein,et al. Deformation Techniques for Sparse Systems , 2006, Found. Comput. Math..
[27] V. Puiseux. Recherches sur les fonctions algébriques. , 1850 .
[28] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[29] Tien-Yien Li. Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .
[30] Andrew J. Sommese,et al. Numerical Irreducible Decomposition Using PHCpack , 2003, Algebra, Geometry, and Software Systems.
[31] B. Sturmfels,et al. First steps in tropical geometry , 2003, math/0306366.
[32] Jonathan D. Hauenstein,et al. Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .
[33] C. Hoffmann. Algebraic curves , 1988 .
[34] A. Morgan,et al. A power series method for computing singular solutions to nonlinear analytic systems , 1992 .
[35] M. Kojima,et al. Computing all nonsingular solutions of cyclic- n polynomial using polyhedral homotopy continuation methods , 2003 .
[36] Rekha R. Thomas,et al. Computing tropical varieties , 2007, J. Symb. Comput..
[37] Dinesh Manocha,et al. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[38] Adrien Poteaux,et al. Towards a Symbolic-Numeric Method to Compute Puiseux Series: The Modular Part , 2008, ArXiv.
[39] J. M. Rojas. Why Polyhedra Matter in Non-Linear Equation Solving , 2002, math/0212309.
[40] G. Ziegler. Lectures on Polytopes , 1994 .
[41] David H. Bailey,et al. Numerical results on relations between fundamental constants using a new algorithm , 1989 .
[42] Andrew J. Sommese,et al. Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..
[43] Tien-Yien Li,et al. Mixed Volume Computation for Semi-Mixed Systems , 2003, Discret. Comput. Geom..
[44] J. Yorke,et al. The cheater's homotopy: an efficient procedure for solving systems of polynomial equations , 1989 .
[45] Akiko Takeda,et al. PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems , 2004, Computing.
[46] Bernard Teissier,et al. Clôture intégrale des idéaux et équisingularité , 2008 .
[47] Andrew J. Sommese,et al. Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..
[48] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[49] J. Maurer. Puiseux expansion for space curves , 1980 .
[50] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[51] A. Khovanskii. Newton polyhedra and the genus of complete intersections , 1978 .
[52] Alicia Dickenstein,et al. Counting solutions to binomial complete intersections , 2005, J. Complex..
[53] J. E. Morais,et al. When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.
[54] George M. Bergman,et al. The logarithmic limit-set of an algebraic variety , 1971 .
[55] A. Morgan. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .
[56] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[57] B. Sturmfels. Polynomial Equations and Convex Polytopes , 1998 .
[58] Tsung-Lin Lee,et al. Mixed Volume Computation , A Revisit , 2007 .
[59] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[60] J. Maurice Rojas,et al. An optimal condition for determining the exact number of roots of a polynomial system , 1991, ISSAC '91.
[61] B Ya Kazarnovskii. Truncation of systems of polynomial equations, ideals and varieties , 1999 .
[62] J. Faugère. A new efficient algorithm for computing Gröbner bases (F4) , 1999 .
[63] Akiko Takeda,et al. DEMiCs: A Software Package for Computing the Mixed Volume Via Dynamic Enumeration of all Mixed Cells , 2008 .
[64] M. Giusti,et al. Foundations of Computational Mathematics: Kronecker's smart, little black boxes , 2001 .
[65] Thorsten Theobald,et al. Computing Amoebas , 2002, Exp. Math..
[66] Bernd Sturmfels,et al. A polyhedral method for solving sparse polynomial systems , 1995 .
[67] Jan Verschelde,et al. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.
[68] J. Verschelde,et al. Symmetrical Newton Polytopes for Solving Sparse Polynomial Systems , 1995 .
[69] Adrien Poteaux,et al. Good reduction of puiseux series and complexity of the Newton-Puiseux algorithm over finite fields , 2008, ISSAC '08.
[70] Andrew J. Sommese,et al. The numerical solution of systems of polynomials - arising in engineering and science , 2005 .
[71] G. Björck,et al. Methods to divide out certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots , 1994 .
[72] J. Verschelde,et al. Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .
[73] D. N. Bernshtein. The number of roots of a system of equations , 1975 .
[74] R. Gardner. Geometric Tomography: Parallel X-rays of planar convex bodies , 2006 .
[75] Grigory Mikhalkin,et al. Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.