Comparative analysis of soiling of CSP mirror materials in arid zones

Considerable loss of energy in the solar fields of Concentrating Solar Power (CSP) systems is caused by accumulated dust on the surface of the solar reflectors deployed in dusty arid and semi-arid zones. The monthly dynamics of changes in reflectance of the widely used second-surface silvered mirrors and innovative candidate aluminum materials under different site conditions can be useful for finding out the soiling characteristics of these mirror materials. Knowledge of the cumulative soiling of candidate mirror materials is essential to understanding their behavior at sites where cleaning is unavailable and water is scarce.

[1]  Robert Pitz-Paal,et al.  Sand erosion on solar reflectors: accelerated simulation and comparison with field data , 2016 .

[2]  A. Fernández-García,et al.  Durability of solar reflector materials for secondary concentrators used in CSP systems , 2014 .

[3]  A. Zuur,et al.  Dynamic factor analysis to estimate common trends in fisheries time series , 2003 .

[4]  Steve Green,et al.  The effect of dust accumulation on line-focus parabolic trough solar collector performance , 1986 .

[5]  Yuncong C. Li,et al.  Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. , 2005, Journal of contaminant hydrology.

[6]  Gregory J. Kolb,et al.  Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants , 1999 .

[7]  Peter C. M. Molenaar,et al.  A dynamic factor model for the analysis of multivariate time series , 1985 .

[8]  Ian T. Jolliffe,et al.  Estimating common trends in multivariate time series using dynamic factor analysis , 2003 .

[9]  E. P. Roth,et al.  The Effect of Natural Soiling and Cleaning on the Size Distribution of Particles Deposited on Glass Mirrors , 1980 .

[10]  Aránzazu Fernández-García,et al.  A parabolic-trough collector for cleaner industrial process heat , 2015 .

[11]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[12]  Michael P. Hannigan,et al.  Natural soiling of photovoltaic cover plates and the impact on transmission , 2015 .

[13]  Aránzazu Fernández-García,et al.  Spectral characterization of specular reflectance of solar mirrors , 2016 .

[14]  Aránzazu Fernández-García,et al.  Study of different cleaning methods for solar reflectors used in CSP plants , 2014 .

[15]  Gregory J. Kolb,et al.  Heliostat Cost Reduction. , 2007 .

[16]  S. Biryukov,et al.  Degradation of optical properties of solar collectors due to the ambient dust deposition as a function of particle size , 1996 .

[17]  S. Bouaddi,et al.  Soiled CSP solar reflectors modeling using dynamic linear models , 2015 .

[18]  Farid Christo,et al.  Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish , 2012 .

[19]  Eckhard Lüpfert,et al.  Advances in Parabolic Trough Solar Power Technology , 2002 .

[20]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[21]  Thomas J. Sargent,et al.  Business cycle modeling without pretending to have too much a priori economic theory , 1976 .

[22]  Syed A.M. Said,et al.  Effect of dust accumulation on the power outputs of solar photovoltaic modules , 2013 .

[23]  A. Zuur,et al.  Analysing Ecological Data , 2007 .

[24]  Robert Pitz-Paal,et al.  Modelling of optical durability of enhanced aluminum solar reflectors , 2012 .

[25]  A. D. Zimon,et al.  Adhesion of dust and powder , 1969 .

[26]  R. B. Pettit,et al.  Characterization of the reflected beam profile of solar mirror materials , 1977 .

[27]  Virginia L. Morris Cleaning agents and techniques for concentrating solar collectors , 1980 .

[28]  M. Merzouk,et al.  Design and experimental testing of an innovative building-integrated box type solar cooker , 2013 .

[29]  H. Tsoar,et al.  Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .