A bijection between Littlewood-Richardson tableaux and rigged configurations

Abstract. We define a bijection from Littlewood-Richardson tableaux to rigged configurations and show that it preserves the appropriate statistics. This proves in particular a quasi-particle expression for the generalized Kostka polynomials $ K_{\lambda R}(q) $ labeled by a partition $ \lambda $ and a sequence of rectangles R. The generalized Kostka polynomials are q-analogues of multiplicities of the irreducible $ GL(n, \mathbb{C}) $-module $ V^\lambda $ of highest weight $ \lambda $ in the tensor product $ V^{R_1} \otimes \cdots \otimes V^{R_L} $.

[1]  Fermionic solution of the Andrews-Baxter-Forrester model. I. Unification of TBA and CTM methods , 1995, hep-th/9501134.

[2]  Jeffrey B. Remmel,et al.  Multiplying Schur functions , 1984, J. Algorithms.

[4]  Anne Schilling,et al.  Inhomogeneous Lattice Paths, Generalized Kostka Polynomials and An−1 Supernomials , 1998, math/9802111.

[5]  A. Kirillov,et al.  A Generalization of the Kostka–Foulkes Polynomials , 1998, math/9803062.

[6]  Fermionic solution of the Andrews-Baxter-Forrester model. II. Proof of Melzer's polynomial identities , 1995, hep-th/9508079.

[7]  Fermionic sum representations for conformal field theory characters , 1993, hep-th/9301046.

[8]  STRINGS, PATHS AND STANDARD TABLEAUX , 1996, q-alg/9601011.

[9]  Masato Okado,et al.  Remarks on Fermionic Formula , 1998, math/9812022.

[10]  Jerzy Weyman,et al.  Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class , 2000, Eur. J. Comb..

[11]  G. Lusztig Green polynomials and singularities of unipotent classes , 1981 .

[12]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[13]  Character formulae of sl̂n-modules and inhomogeneous paths , 1998, math/9802085.

[14]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[15]  A. Ludwig,et al.  Spinon bases, Yangian symmetry and fermionic representations of Virasoro characters in conformal field theory , 1994, hep-th/9406020.

[16]  B. McCoy,et al.  Fermionic quasi-particle representations for characters of (G (1) ) 1 × (G (1) ) 1 /(G (1) ) 2 , 1992, hep-th/9211102.

[17]  Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series M(v,v + 1): Exact results , 1994, hep-th/9403073.

[18]  Marcel P. Schützenberger Quelques remarques sur une Construction de Schensted. , 1963 .

[19]  Sergey Fomin,et al.  A Littlewood-Richardson Miscellany , 1993, Eur. J. Comb..

[20]  Anne Schilling,et al.  Rogers–Schur–Ramanujan Type Identities for the M(p,p′) Minimal Models of Conformal Field Theory , 1998 .

[21]  Mark Shimozono Multi-atoms and Monotonicity of Generalized Kostka Polynomials , 2001, Eur. J. Comb..

[22]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[23]  Affine Type A Crystal Structure on Tensor Products of Rectangles, Demazure Characters, and Nilpotent Varieties , 1998, math/9804039.

[24]  Anatol N. Kirillov,et al.  The Bethe Ansatz and the combinatorics of Young tableaux , 1988 .

[25]  Mark Shimozono A Cyclage Poset Structure for Littlewood-Richardson Tableaux , 2001, Eur. J. Comb..