Tensor product Gauss-Lobatto points are Fekete points for the cube

Tensor products of Gauss-Lobatto quadrature points are frequently used as collocation points in spectral element methods. Unfortunately, it is not known if Gauss-Lobatto points exist in non-tensor-product domains like the simplex. In this work, we show that the n-dimensional tensor-product of Gauss-Lobatto quadrature points are also Fekete points. This suggests a way to generalize spectral methods based on Gauss-Lobatto points to non-tensor-product domains, since Fekete points are known to exist and have been computed in the triangle and tetrahedron. In one dimension this result was proved by Fejer in 1932, but the extension to higher dimensions in non-trivial.

[1]  George Em Karniadakis,et al.  A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .

[2]  Beth A. Wingate,et al.  A generalized diagonal mass matrix spectral element method for non-quadrilateral elements , 2000 .

[3]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[4]  Ivo Babuška,et al.  Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .

[5]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[6]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[7]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  B. A. WingatezAbstract Fekete Collocation Points for Triangular Spectral Elements , 1998 .

[10]  Len Bos,et al.  On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .

[11]  Roland Martin,et al.  WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .

[12]  L. Fejér,et al.  Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines Maximum Besitzt , 1932 .