Tensor product Gauss-Lobatto points are Fekete points for the cube
暂无分享,去创建一个
[1] George Em Karniadakis,et al. A triangular spectral element method; applications to the incompressible Navier-Stokes equations , 1995 .
[2] Beth A. Wingate,et al. A generalized diagonal mass matrix spectral element method for non-quadrilateral elements , 2000 .
[3] A. Patera. A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .
[4] Ivo Babuška,et al. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle , 1995 .
[5] Jan S. Hesthaven,et al. Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..
[6] A. Patera,et al. Spectral element methods for the incompressible Navier-Stokes equations , 1989 .
[7] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[8] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[9] B. A. WingatezAbstract. Fekete Collocation Points for Triangular Spectral Elements , 1998 .
[10] Len Bos,et al. On certain configurations of points in R n which are unisolvent for polynomial interpolation , 1991 .
[11] Roland Martin,et al. WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .
[12] L. Fejér,et al. Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grundfunktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines Maximum Besitzt , 1932 .