A New Approach to the Fraenkel Conjecture for Low n Values
暂无分享,去创建一个
[1] Aviezri S. Fraenkel,et al. Complementing and Exactly Covering Sequences , 1973, J. Comb. Theory, Ser. A.
[2] Ronald L. Graham,et al. Covering the Positive Integers by Disjoint Sets of the Form {[n alpha + beta]: n = 1, 2, ...} , 1973, J. Comb. Theory, Ser. A.
[3] P. Erdos,et al. Old and new problems and results in combinatorial number theory , 1980 .
[4] R. Morikawa,et al. On eventually covering families generated by the bracket function V , 1983 .
[5] Aviezri S. Fraenkel,et al. Disjoint covering systems of rational beatty sequences , 1986, J. Comb. Theory, Ser. A.
[6] R. Tijdeman,et al. On complementary triples of Sturmian bisequences , 1996 .
[7] Michael Rubinstein,et al. The Number of Intersection Points Made by the Diagonals of a Regular Polygon , 1995, SIAM J. Discret. Math..
[8] Micaela Mayero,et al. The Three Gap Theorem (Steinhaus Conjecture) , 1999, TYPES.
[9] Robert Tijdeman. Fraenkel's conjecture for six sequences , 2000, Discret. Math..
[10] Eitan Altman,et al. Balanced sequences and optimal routing , 2000, JACM.
[11] J. Bark,et al. Partitioning the positive integers to seven Beatty sequences , 2003 .
[12] Jamie Simpson,et al. DISJOINT BEATTY SEQUENCES , 2004 .
[13] Gerald A. Edgar,et al. Problems and Solutions , 2015, Am. Math. Mon..