Sustaining the silicon revolution: From 3-D transistors to 3-D integration

Technological pathways for sustaining continual improvement in silicon integrated-circuit “chip” functionality at ever lower cost and energy per function, toward the vision of the Internet of Everything, are discussed.

[1]  Elad Alon,et al.  Prospects for MEM logic switch technology , 2010, 2010 International Electron Devices Meeting.

[2]  Tsu-Jae King Liu,et al.  Design and reliability of a micro-relay technology for zero-standby-power digital logic applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[3]  Tsu-Jae King Liu,et al.  Multi-input/multi-output relay design for more compact and versatile implementation of digital logic with zero leakage , 2012, Proceedings of Technical Program of 2012 VLSI Technology, System and Application.

[4]  Tsu-Jae King Liu,et al.  4-terminal relay technology for complementary logic , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[5]  Tsu-Jae King Liu,et al.  Energy-delay performance optimization of NEM logic relay , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[6]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[7]  Tsu-Jae King Liu,et al.  Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[8]  L. J. Hornbeck Current status of the digital micromirror device (DMD) for projection television applications , 1993, Proceedings of IEEE International Electron Devices Meeting.

[9]  T. Liu,et al.  Simulation-Based Study of the Inserted-Oxide FinFET for Future Low-Power System-on-Chip Applications , 2015, IEEE Electron Device Letters.

[10]  K. Kuhn,et al.  Scaling Limits of Electrostatic Nanorelays , 2013, IEEE Transactions on Electron Devices.

[11]  R. F. Tsui,et al.  An enhanced 16nm CMOS technology featuring 2nd generation FinFET transistors and advanced Cu/low-k interconnect for low power and high performance applications , 2014, 2014 IEEE International Electron Devices Meeting.

[12]  S. Datta,et al.  Exploration of vertical MOSFET and tunnel FET device architecture for Sub 10nm node applications , 2012, 70th Device Research Conference.

[13]  O. Faynot,et al.  15nm-diameter 3D stacked nanowires with independent gates operation: ΦFET , 2008, 2008 IEEE International Electron Devices Meeting.

[14]  G. Northrop,et al.  High performance 14nm SOI FinFET CMOS technology with 0.0174µm2 embedded DRAM and 15 levels of Cu metallization , 2014, 2014 IEEE International Electron Devices Meeting.

[15]  A. Lochtefeld,et al.  (Invited) Aspect Ratio Trapping: A Unique Technology for Integrating Ge and III-Vs with Silicon CMOS , 2010 .

[16]  Elad Alon,et al.  A predictive contact reliability model for MEM logic switches , 2010, 2010 International Electron Devices Meeting.

[17]  Mark Y. Liu,et al.  A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size , 2014, 2014 IEEE International Electron Devices Meeting.

[18]  Larry J. Hornbeck,et al.  Digital Light Processing for high-brightness high-resolution applications , 1997, Electronic Imaging.

[19]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[20]  Walter M. Duncan,et al.  Emerging digital micromirror device (DMD) applications , 2003, SPIE MOEMS-MEMS.

[21]  Tsu-Jae King Liu,et al.  Nanoelectromechanical Switches for Low-Power Digital Computing , 2015, Micromachines.

[22]  B. McCarthy,et al.  SOI gated resistor: CMOS without junctions , 2009, 2009 IEEE International SOI Conference.