Venom‐gland transcriptomics and venom proteomics of the black‐back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity

[1]  A. D. Jones,et al.  Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). , 2016, Integrative and comparative biology.

[2]  R. Lerner,et al.  Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries. , 2016, Angewandte Chemie.

[3]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..

[4]  K. Sunagar,et al.  The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals , 2015, PLoS genetics.

[5]  D. Rokyta,et al.  Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms , 2015, G3: Genes, Genomes, Genetics.

[6]  D. Rokyta,et al.  The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). , 2015, Toxicon : official journal of the International Society on Toxinology.

[7]  V. Quintero-Hernández,et al.  Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion , 2015, PloS one.

[8]  I. Junqueira-de-Azevedo,et al.  The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. , 2015, Toxicon : official journal of the International Society on Toxinology.

[9]  V. Quintero-Hernández,et al.  Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus , 2015, PloS one.

[10]  D. Rokyta,et al.  Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species , 2014, Genetics.

[11]  P. Harrison,et al.  Antimicrobial peptides from scorpion venoms , 2014, Toxicon.

[12]  J. Calvete,et al.  Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.

[13]  J. Tytgat,et al.  Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. , 2014, Toxicon : official journal of the International Society on Toxinology.

[14]  A. Almaaytah,et al.  Scorpion venom peptides with no disulfide bridges: A review , 2014, Peptides.

[15]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[16]  The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides , 2014, BMC Genomics.

[17]  V. Quintero-Hernández,et al.  Scorpion venom components that affect ion-channels function. , 2013, Toxicon : official journal of the International Society on Toxinology.

[18]  Z. Cao,et al.  Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. , 2013, Journal of proteomics.

[19]  L. L. Valdez-Vélázquez,et al.  Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus , 2013, PloS one.

[20]  V. Quintero-Hernández,et al.  Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. , 2013, Toxicon : official journal of the International Society on Toxinology.

[21]  D. Rokyta,et al.  The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics , 2013, BMC Genomics.

[22]  E. Kalapothakis,et al.  Transcriptome analysis of the Tityus serrulatus scorpion venom gland , 2012 .

[23]  A. Herrera-Estrella,et al.  Global Transcriptome Analysis of the Scorpion Centruroides noxius: New Toxin Families and Evolutionary Insights from an Ancestral Scorpion Species , 2012, PloS one.

[24]  A. Lemmon,et al.  The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus) , 2012, BMC Genomics.

[25]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[26]  Yingliang Wu,et al.  Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. , 2012, Journal of proteomics.

[27]  J. Tytgat,et al.  Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): Transcriptome, venomics and function , 2012, Proteomics.

[28]  G. Lowe,et al.  Contributions to scorpion systematics. IV. Observations on the Hadrurus “spadix” subgroup with a description of a new species (Scorpiones: Caraboctonidae) , 2011 .

[29]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[30]  Mingyao Li,et al.  Widespread RNA and DNA Sequence Differences in the Human Transcriptome , 2011, Science.

[31]  A. Lemmon,et al.  A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. , 2011, Toxicon : official journal of the International Society on Toxinology.

[32]  S. Navidpour,et al.  On two subspecies of Mesobuthus eupeus (C. L. Koch, 1839) in Turkey (Scorpiones: Buthidae) , 2011 .

[33]  Li Wenxin,et al.  Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components , 2010, BMC Genomics.

[34]  Z. Cao,et al.  Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis , 2010, Proteomics.

[35]  Yingliang Wu,et al.  Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal , 2009, BMC Genomics.

[36]  L. Possani,et al.  Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors , 2009, British journal of pharmacology.

[37]  J. Mesirov,et al.  Prediction of high-responding peptides for targeted protein assays by mass spectrometry , 2009, Nature Biotechnology.

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  L. Prendini,et al.  Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): A reappraisal , 2008 .

[40]  E. Remigio,et al.  Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails , 2008, Molecular ecology.

[41]  H. Gibbs,et al.  Rapid Evolution by Positive Selection and Gene Gain and Loss: Pla 2 Venom Genes in Closely Related Sistrurus Rattlesnakes with Divergent Diets , 2007 .

[42]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[43]  R. C. Rodríguez de la Vega,et al.  Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones) , 2007, BMC Genomics.

[44]  Vincent J. Lynch,et al.  Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes , 2007, BMC Evolutionary Biology.

[45]  HgeTx1, the first K+-channel specific toxin characterized from the venom of the scorpion Hadrurus gertschi Soleglad. , 2006, Toxicon : official journal of the International Society on Toxinology.

[46]  J. Calvete,et al.  Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. , 2006, Journal of proteome research.

[47]  James P. Reilly,et al.  A computational approach toward label-free protein quantification using predicted peptide detectability , 2006, ISMB.

[48]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[49]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.

[50]  G. Corzo,et al.  Scorpion Venom Peptides without Disulfide Bridges , 2005, IUBMB life.

[51]  R. C. Rodríguez de la Vega,et al.  Current views on scorpion toxins specific for K+-channels. , 2004, Toxicon : official journal of the International Society on Toxinology.

[52]  L. Possani,et al.  Phaiodactylipin, a glycosylated heterodimeric phospholipase A from the venom of the scorpion Anuroctonus phaiodactylus. , 2004, European journal of biochemistry.

[53]  V. Fet,et al.  High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni) , 2003 .

[54]  G. Lowe,et al.  The first molecular phylogeny of Buthidae (Scorpiones) , 2003 .

[55]  Z. Yang,et al.  Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. , 2001, Molecular biology and evolution.

[56]  A. Torres-Larios,et al.  Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. , 2000, European journal of biochemistry.

[57]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[58]  L. Possani,et al.  Scorpine, an anti‐malaria and anti‐bacterial agent purified from scorpion venom , 2000, FEBS letters.

[59]  G A Gutman,et al.  A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. , 1999, Trends in pharmacological sciences.

[60]  S. Palumbi,et al.  Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[62]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[63]  H. L. Stahnke Scorpions of the genus Hadrurus Thorell. American Museum novitates ; no. 1298 , 1945 .