Venom‐gland transcriptomics and venom proteomics of the black‐back scorpion (Hadrurus spadix) reveal detectability challenges and an unexplored realm of animal toxin diversity
暂无分享,去创建一个
[1] A. D. Jones,et al. Sex Differences in Defensive Behavior and Venom of The Striped Bark Scorpion Centruroides vittatus (Scorpiones: Buthidae). , 2016, Integrative and comparative biology.
[2] R. Lerner,et al. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries. , 2016, Angewandte Chemie.
[3] José A. Dianes,et al. 2016 update of the PRIDE database and its related tools , 2015, Nucleic Acids Res..
[4] K. Sunagar,et al. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals , 2015, PLoS genetics.
[5] D. Rokyta,et al. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms , 2015, G3: Genes, Genomes, Genetics.
[6] D. Rokyta,et al. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). , 2015, Toxicon : official journal of the International Society on Toxinology.
[7] V. Quintero-Hernández,et al. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion , 2015, PloS one.
[8] I. Junqueira-de-Azevedo,et al. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. , 2015, Toxicon : official journal of the International Society on Toxinology.
[9] V. Quintero-Hernández,et al. Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus , 2015, PloS one.
[10] D. Rokyta,et al. Contrasting Modes and Tempos of Venom Expression Evolution in Two Snake Species , 2014, Genetics.
[11] P. Harrison,et al. Antimicrobial peptides from scorpion venoms , 2014, Toxicon.
[12] J. Calvete,et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms , 2014, Proceedings of the National Academy of Sciences.
[13] J. Tytgat,et al. Partial transcriptomic profiling of toxins from the venom gland of the scorpion Parabuthus stridulus. , 2014, Toxicon : official journal of the International Society on Toxinology.
[14] A. Almaaytah,et al. Scorpion venom peptides with no disulfide bridges: A review , 2014, Peptides.
[15] Jiajie Zhang,et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..
[16] The Mediterranean scorpion Mesobuthus gibbosus (Scorpiones, Buthidae): transcriptome analysis and organization of the genome encoding chlorotoxin-like peptides , 2014, BMC Genomics.
[17] V. Quintero-Hernández,et al. Scorpion venom components that affect ion-channels function. , 2013, Toxicon : official journal of the International Society on Toxinology.
[18] Z. Cao,et al. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. , 2013, Journal of proteomics.
[19] L. L. Valdez-Vélázquez,et al. Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus , 2013, PloS one.
[20] V. Quintero-Hernández,et al. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. , 2013, Toxicon : official journal of the International Society on Toxinology.
[21] D. Rokyta,et al. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics , 2013, BMC Genomics.
[22] E. Kalapothakis,et al. Transcriptome analysis of the Tityus serrulatus scorpion venom gland , 2012 .
[23] A. Herrera-Estrella,et al. Global Transcriptome Analysis of the Scorpion Centruroides noxius: New Toxin Families and Evolutionary Insights from an Ancestral Scorpion Species , 2012, PloS one.
[24] A. Lemmon,et al. The venom-gland transcriptome of the eastern diamondback rattlesnake (Crotalus adamanteus) , 2012, BMC Genomics.
[25] Steven L Salzberg,et al. Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.
[26] Yingliang Wu,et al. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. , 2012, Journal of proteomics.
[27] J. Tytgat,et al. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): Transcriptome, venomics and function , 2012, Proteomics.
[28] G. Lowe,et al. Contributions to scorpion systematics. IV. Observations on the Hadrurus “spadix” subgroup with a description of a new species (Scorpiones: Caraboctonidae) , 2011 .
[29] S. Brunak,et al. SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.
[30] Mingyao Li,et al. Widespread RNA and DNA Sequence Differences in the Human Transcriptome , 2011, Science.
[31] A. Lemmon,et al. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes. , 2011, Toxicon : official journal of the International Society on Toxinology.
[32] S. Navidpour,et al. On two subspecies of Mesobuthus eupeus (C. L. Koch, 1839) in Turkey (Scorpiones: Buthidae) , 2011 .
[33] Li Wenxin,et al. Comparative venom gland transcriptome analysis of the scorpion Lychas mucronatus reveals intraspecific toxic gene diversity and new venomous components , 2010, BMC Genomics.
[34] Z. Cao,et al. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis , 2010, Proteomics.
[35] Yingliang Wu,et al. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal , 2009, BMC Genomics.
[36] L. Possani,et al. Characterization of hadrucalcin, a peptide from Hadrurus gertschi scorpion venom with pharmacological activity on ryanodine receptors , 2009, British journal of pharmacology.
[37] J. Mesirov,et al. Prediction of high-responding peptides for targeted protein assays by mass spectrometry , 2009, Nature Biotechnology.
[38] Cole Trapnell,et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.
[39] L. Prendini,et al. Phylogeny and classification of the giant hairy scorpions, Hadrurus Thorell (Iuridae Thorell): A reappraisal , 2008 .
[40] E. Remigio,et al. Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails , 2008, Molecular ecology.
[41] H. Gibbs,et al. Rapid Evolution by Positive Selection and Gene Gain and Loss: Pla 2 Venom Genes in Closely Related Sistrurus Rattlesnakes with Divergent Diets , 2007 .
[42] Ziheng Yang. PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.
[43] R. C. Rodríguez de la Vega,et al. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones) , 2007, BMC Genomics.
[44] Vincent J. Lynch,et al. Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes , 2007, BMC Evolutionary Biology.
[45] HgeTx1, the first K+-channel specific toxin characterized from the venom of the scorpion Hadrurus gertschi Soleglad. , 2006, Toxicon : official journal of the International Society on Toxinology.
[46] J. Calvete,et al. Venom proteomes of closely related Sistrurus rattlesnakes with divergent diets. , 2006, Journal of proteome research.
[47] James P. Reilly,et al. A computational approach toward label-free protein quantification using predicted peptide detectability , 2006, ISMB.
[48] Adam Godzik,et al. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..
[49] R. Aebersold,et al. Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.
[50] G. Corzo,et al. Scorpion Venom Peptides without Disulfide Bridges , 2005, IUBMB life.
[51] R. C. Rodríguez de la Vega,et al. Current views on scorpion toxins specific for K+-channels. , 2004, Toxicon : official journal of the International Society on Toxinology.
[52] L. Possani,et al. Phaiodactylipin, a glycosylated heterodimeric phospholipase A from the venom of the scorpion Anuroctonus phaiodactylus. , 2004, European journal of biochemistry.
[53] V. Fet,et al. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni) , 2003 .
[54] G. Lowe,et al. The first molecular phylogeny of Buthidae (Scorpiones) , 2003 .
[55] Z. Yang,et al. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. , 2001, Molecular biology and evolution.
[56] A. Torres-Larios,et al. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. , 2000, European journal of biochemistry.
[57] N. Goldman,et al. Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.
[58] L. Possani,et al. Scorpine, an anti‐malaria and anti‐bacterial agent purified from scorpion venom , 2000, FEBS letters.
[59] G A Gutman,et al. A unified nomenclature for short-chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. , 1999, Trends in pharmacological sciences.
[60] S. Palumbi,et al. Molecular genetics of ecological diversification: duplication and rapid evolution of toxin genes of the venomous gastropod Conus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[61] Ziheng Yang,et al. PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..
[62] John Aitchison,et al. The Statistical Analysis of Compositional Data , 1986 .
[63] H. L. Stahnke. Scorpions of the genus Hadrurus Thorell. American Museum novitates ; no. 1298 , 1945 .