Microlocal analysis of some isospectral deformations

We study the microlocal structure of the examples of isospectral deformations of Riemannian manifolds given by D. DeTurck and C. Gordon in [DeT-GI]. The Schwartz kernel of the intertwining operators considered by them may be written as an oscillatory integral with a singular phase function and product type amplitude. In certain instances, we identify them as belonging to the space of Fourier integral operators associated with various pairwise intersecting Lagrangians. After formulating a class of operators incorporating the most relevant features of the operators above, we establish a composition calculus for this class and show that is not necessary to introduce new Lagrangians in the composition.

[1]  Carolyn S. Gordon,et al.  Isospectral deformations of compact solvmanifolds , 1984 .

[2]  L. Hörmander Fourier integral operators. I , 1995 .

[3]  Symbol calculus associated with intersecting lagrangians , 1982 .

[4]  Gunther Uhlmann,et al.  Estimates for singular radon transforms and pseudodifferential operators with singular symbols , 1990 .

[5]  Gunther Uhlmann,et al.  Lagrangian Intersection and the Cauchy Problem , 1979 .

[6]  Gunther Uhlmann,et al.  Oscillatory integrals with singular symbols , 1981 .

[7]  Gunther Uhlmann,et al.  Composition of some singular Fourier integral operators and estimates for restricted $X$-ray transforms , 1990 .

[8]  Raoul Bott,et al.  On the iteration of closed geodesics and the sturm intersection theory , 1956 .

[9]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[10]  G. Uhlmann,et al.  Nonlocal inversion formulas for the X-ray transform , 1989 .

[11]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[12]  Victor Guillemin,et al.  Cosmology in (2+1)- Dimensions, Cyclic Models, and Deformations of M2,1 , 1989 .

[13]  V. Guillemin,et al.  The spectrum of positive elliptic operators and periodic bicharacteristics , 1975 .

[14]  G. Hooft Cosmology in 2+1 dimensions , 1993 .

[15]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[16]  R. Melrose Transformation of boundary problems , 1981 .

[17]  Alan Weinstein,et al.  On Maslov’s quantization condition , 1975 .

[18]  D. DeTurck,et al.  Isospectral deformations II: Trace formulas, metrics, and potentials , 1989 .

[19]  D. DeTurck,et al.  Isospectral deformations I: Riemannian structures on two‐step nilspaces , 1987 .

[20]  G. Uhlmann,et al.  A functional calculus for a class of pseudodifferential operators with singular symbols , 1985 .