Robust Estimation of Heckman Model

We first review the basic ideas of robust statistics and define the main tools used to formalize the problem and to construct new robust statistical procedures. In particular we focus on the influence function, the Gâteaux derivative of a functional in direction of a point mass, which can be used both to study the local stability properties of a statistical procedure and to construct new robust procedures. In the second part we show how these principles can be used to carry out a robustness analysis in [13] model and how to construct robust versions of Heckman’s two-stage estimator. These are central tools for the statistical analysis of data based on non-random samples from a population.

[1]  Rosalba Radice,et al.  Computational Statistics and Data Analysis , 2022 .

[2]  R. V. Mises On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .

[3]  F. Peracchi,et al.  Robust M-Tests , 1991, Econometric Theory.

[4]  Christopher Winship,et al.  Models for Sample Selection Bias , 1992 .

[5]  Gabriel Montes-Rojas Robust Misspecification Tests for the Heckman's Two-Step Estimator , 2011 .

[6]  P. Rousseeuw,et al.  The Change-of-Variance Curve and Optimal Redescending M-Estimators , 1981 .

[7]  Jonathan B. Hill,et al.  Supplemental Material for GEL Estimation for Heavy-Tailed GARCH Models with Robust Empirical Likelihood Inference , 2015 .

[8]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[9]  E. Ronchetti,et al.  Robust inference with GMM estimators , 2001 .

[10]  F. Vella Estimating Models with Sample Selection Bias: A Survey , 1998 .

[11]  R. Koenker Quantile Regression: Name Index , 2005 .

[12]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[13]  The change-of-variance function of M-estimators of scale under general contamination , 1995 .

[14]  F. Peracchi,et al.  Bounded-influence estimators for the tobit model , 1990 .

[15]  Whitney K. Newey,et al.  Two-Step Series Estimation of Sample Selection Models , 2009 .

[16]  M. Genton,et al.  Robust inference in sample selection models , 2016 .

[17]  W. Greene Sample Selection Bias as a Specification Error: Comment , 1981 .

[18]  Moshe Buchinsky,et al.  The dynamics of changes in the female wage distribution in the USA: a quantile regression approach , 1998 .

[19]  E. Ronchetti,et al.  Robust statistics: a selective overview and new directions , 2015 .

[20]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[21]  J. Heckman Sample selection bias as a specification error , 1979 .

[22]  J. Powell,et al.  Semiparametric estimation of censored selection models with a nonparametric selection mechanism , 1993 .

[23]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[24]  Whitney K. Newey,et al.  Nonparametric Estimation of Sample Selection Models , 2003 .

[25]  B. Melly,et al.  A Test of the Conditional Independence Assumption In Sample Selection Models , 2012 .

[26]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[27]  R. Spady,et al.  AN EFFICIENT SEMIPARAMETRIC ESTIMATOR FOR BINARY RESPONSE MODELS , 1993 .

[28]  Maria-Pia Victoria-Feser,et al.  Robustness properties of inequality measures , 1996 .

[29]  Shinichi Sakata,et al.  HIGH BREAKDOWN POINT CONDITIONAL DISPERSION ESTIMATION WITH APPLICATION TO S&P 500 DAILY RETURNS VOLATILITY , 1998 .

[30]  B. Melly,et al.  A Test of the Conditional Independence Assumption in Sample Selection Models: A TEST OF THE CONDITIONAL INDEPENDENCE ASSUMPTION , 2015 .

[31]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[32]  E. Ronchetti,et al.  Robust Inference for Generalized Linear Models , 2001 .

[33]  Yulia V. Marchenko,et al.  A Heckman Selection-t Model , 2012 .