Maximum Likelihood Reconstruction for Magnetic Resonance Fingerprinting

This paper introduces a statistical estimation framework for magnetic resonance (MR) fingerprinting, a recently proposed quantitative imaging paradigm. Within this framework, we present a maximum likelihood (ML) formalism to estimate multiple MR tissue parameter maps directly from highly undersampled, noisy k-space data. A novel algorithm, based on variable splitting, the alternating direction method of multipliers, and the variable projection method, is developed to solve the resulting optimization problem. Representative results from both simulations and in vivo experiments demonstrate that the proposed approach yields significantly improved accuracy in parameter estimation, compared to the conventional MR fingerprinting reconstruction. Moreover, the proposed framework provides new theoretical insights into the conventional approach. We show analytically that the conventional approach is an approximation to the ML reconstruction; more precisely, it is exactly equivalent to the first iteration of the proposed algorithm for the ML reconstruction, provided that a gridding reconstruction is used as an initialization.

[1]  Jens Frahm,et al.  Fast T2 Mapping With Improved Accuracy Using Undersampled Spin-Echo MRI and Model-Based Reconstructions With a Generating Function , 2014, IEEE Transactions on Medical Imaging.

[2]  J. Hennig Multiecho imaging sequences with low refocusing flip angles , 1988 .

[3]  Li Feng,et al.  Accelerated cardiac T2 mapping using breath‐hold multiecho fast spin‐echo pulse sequence with k‐t FOCUSS , 2011, Magnetic resonance in medicine.

[4]  Kawin Setsompop,et al.  Accelerating magnetic resonance fingerprinting (MRF) using t‐blipped simultaneous multislice (SMS) acquisition , 2016, Magnetic resonance in medicine.

[5]  D. Hahn,et al.  Model‐based Acceleration of Parameter mapping (MAP) for saturation prepared radially acquired data , 2013, Magnetic resonance in medicine.

[6]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[7]  Lawrence L. Wald,et al.  Maximum likelihood reconstruction for magnetic resonance fingerprinting , 2016, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[8]  Martijn A Cloos,et al.  190 Plug and Play Parallel Transmission at 7 and 9 . 4 Tesla based on Principles from MR Fingerprinting , 2013 .

[9]  Justin P. Haldar,et al.  Low rank matrix recovery for real-time cardiac MRI , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[10]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[11]  Kawin Setsompop,et al.  Fast group matching for MR fingerprinting reconstruction , 2015, Magnetic resonance in medicine.

[12]  John Wright,et al.  Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions , 2014, IEEE Transactions on Information Theory.

[13]  Jianlin Xia,et al.  Superfast and Stable Structured Solvers for Toeplitz Least Squares via Randomized Sampling , 2014, SIAM J. Matrix Anal. Appl..

[14]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[15]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[16]  Dong Liang,et al.  A model-based method with joint sparsity constraint for direct diffusion tensor estimation , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[17]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[18]  Justin P. Haldar,et al.  Super-resolution reconstruction of MR image sequences with contrast modeling , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[19]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[20]  Mathews Jacob,et al.  Deformation Corrected Compressed Sensing (DC-CS): A Novel Framework for Accelerated Dynamic MRI , 2014, IEEE Transactions on Medical Imaging.

[21]  P Kellman,et al.  Joint estimation of water/fat images and field inhomogeneity map , 2008, Magnetic resonance in medicine.

[22]  J. Pauly,et al.  Accelerating parameter mapping with a locally low rank constraint , 2015, Magnetic resonance in medicine.

[23]  Bo Zhao,et al.  Model-based iterative reconstruction for magnetic resonance fingerprinting , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[24]  Pierre Vandergheynst,et al.  Compressed quantitative MRI: Bloch response recovery through iterated projection , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Gene H. Golub,et al.  The differentiation of pseudo-inverses and non-linear least squares problems whose variables separate , 1972, Milestones in Matrix Computation.

[26]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[27]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[28]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[29]  Sajan Goud Lingala,et al.  Highly Accelerated Brain DCE MRI with Direct Estimation of Pharmacokinetic Parameter Maps , 2014 .

[30]  Craig H Meyer,et al.  Estimation of k‐space trajectories in spiral MRI , 2009, Magnetic resonance in medicine.

[31]  Xiaogang Wang,et al.  MRF denoising with compressed sensing and adaptive filtering , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[32]  Yun Jiang,et al.  SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain , 2014, IEEE Transactions on Medical Imaging.

[33]  Jianlin Xia,et al.  Fast reconstruction for multichannel compressed sensing using a hierarchically semiseparable solver , 2015, Magnetic resonance in medicine.

[34]  José M. Bioucas-Dias,et al.  Fast Image Recovery Using Variable Splitting and Constrained Optimization , 2009, IEEE Transactions on Image Processing.

[35]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[36]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[37]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[38]  Dong Liang,et al.  Recovery of parametric manifold from reduced measurements: Application to magnetic resonance parameter mapping , 2015, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI).

[39]  Zhi-Pei Liang,et al.  Accelerated MR parameter mapping with low‐rank and sparsity constraints , 2015, Magnetic resonance in medicine.

[40]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[41]  Zhi-Pei Liang,et al.  Model-based MR parameter mapping with sparsity constraint , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[42]  M. Lustig,et al.  Compressed sensing for chemical shift‐based water–fat separation , 2010, Magnetic resonance in medicine.

[43]  Pierre Vandergheynst,et al.  A Compressed Sensing Framework for Magnetic Resonance Fingerprinting , 2013, SIAM J. Imaging Sci..

[44]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[45]  Ganesh Adluru,et al.  Model‐based reconstruction of undersampled diffusion tensor k‐space data , 2013, Magnetic resonance in medicine.

[46]  Vikas Gulani,et al.  Magnetic resonance fingerprinting ( MRF ) for rapid quantitative abdominal imaging , 2013 .

[47]  Huiqian Du,et al.  Compressed sensing MR image reconstruction using a motion-compensated reference. , 2012, Magnetic resonance imaging.

[48]  Mariya Doneva,et al.  Compressed sensing reconstruction for magnetic resonance parameter mapping , 2010, Magnetic resonance in medicine.

[49]  Jeffrey A. Fessler,et al.  Parallel MR Image Reconstruction Using Augmented Lagrangian Methods , 2011, IEEE Transactions on Medical Imaging.

[50]  M. Griswold,et al.  MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout , 2015, Magnetic resonance in medicine.

[51]  J. Duerk,et al.  Magnetic Resonance Fingerprinting , 2013, Nature.

[52]  Michael Elad,et al.  ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA , 2014, Magnetic resonance in medicine.

[53]  Zhi-Pei Liang,et al.  Model-based MR parameter mapping with sparsity constraint , 2013, ISBI.

[54]  Armando Manduca,et al.  Estimating T1 from multichannel variable flip angle SPGR sequences , 2013, Magnetic resonance in medicine.

[55]  Justin P. Haldar,et al.  Image Reconstruction From Highly Undersampled $( {\bf k}, {t})$-Space Data With Joint Partial Separability and Sparsity Constraints , 2012, IEEE Transactions on Medical Imaging.

[56]  Jens Frahm,et al.  Model‐based nonlinear inverse reconstruction for T2 mapping using highly undersampled spin‐echo MRI , 2011, Journal of magnetic resonance imaging : JMRI.

[57]  J. Haldar,et al.  Maximum Likelihood Estimation of T 1 Relaxation Parameters Using VARPRO , 2007 .

[58]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[59]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.