A unified solution in fuzzy capital budgeting

Abstract Since the mid-1980s, both academics and practitioners have proposed and discussed various solutions in fuzzy capital budgeting. Based primarily on traditional capital budgeting methods, these solutions present the same problems as their respective deterministic methods: the implicit assumptions of the reinvestment rates; the possibility of multiple rates of return; and the possibility of anomalous behavior of the net present value method. This paper presents a unified solution in fuzzy capital budgeting based on modified deterministic methods proposed in the financial literature. This unified approach eliminates those problems and has the property of matching decisions on acceptance or rejection of investment projects with same life horizons and same scales and therefore maximize shareholder wealth. An insight is provided into the advantages of these investment project appraisal methods by comparing and contrasting them with traditional fuzzy methods. A comprehensive case study, based on an investment project on exploration of an oil field under both deterministic and fuzzy conditions, is included to illustrate the use of these methods. Due to the complexity of the calculations involved, new MS-Excel financial functions are developed, by using Visual Basic for Applications. The main contribution of this paper is the development of a unifying approach to capital budgeting under uncertainty that emphasizes the strengths of the modified methods, while bypassing the individual conflicts and drawbacks of the conventional capital budgeting methods. Results confirm that the proposed solution has many advantages over other capital budgeting methods.

[1]  J. Buckley,et al.  Fuzzy Mathematics in Finance , 1987 .

[2]  Cengiz Kahraman,et al.  Economic Analysis of Municipal Solid Waste Collection Systems Using Type-2 Fuzzy Net Present Worth Analysis , 2016, Intelligence Systems in Environmental Management.

[3]  Madan M. Gupta,et al.  Fuzzy mathematical models in engineering and management science , 1988 .

[4]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[5]  A. Kaufmann,et al.  Introducción de la teoría de los subconjuntos borrosos a la gestión de las empresas , 1986 .

[6]  J. J. Buckley,et al.  Portfolio analysis using possibility distributions , 1987 .

[7]  Cengiz Kahraman,et al.  Fuzzy Economic Analysis Methods for Environmental Economics , 2016, Intelligence Systems in Environmental Management.

[8]  Cengiz Kahraman,et al.  Operating system selection using fuzzy replacement analysis and analytic hierarchy process , 2005 .

[9]  Taha Elhag,et al.  Applying fuzzy techniques to cash flow analysis , 1999 .

[10]  土居 征夫 総合国策の研究と次世代リーダーの養成 「総力戦研究所」とは何だったのか (Feature Articlesリーダーシップ不在の悲劇 検証 失敗の本質) , 2012 .

[11]  Dorota Kuchta,et al.  Fuzzy capital budgeting , 2000, Fuzzy Sets Syst..

[12]  Chui-Yu Chiu,et al.  FUZZY CASH FLOW ANALYSIS USING PRESENT WORTH CRITERION , 1994 .

[13]  L. C. Gapenski Healthcare Finance: An Introduction to Accounting and Financial Management , 2001 .

[14]  J. Oehmke Anomalies in net present value calculations , 2000 .

[15]  Da Ruan,et al.  Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows , 2002, Inf. Sci..

[16]  Frank J. Fabozzi,et al.  Capital Budgeting: Theory and Practice , 2002 .

[17]  Robert G. Beaves,et al.  The Case for a Generalized Net Present Value Formula , 1993 .

[18]  A. Lafuente El análisis financiero en la incertidumbre , 1990 .

[19]  Y. Biondi The double emergence of the Modified Internal Rate of Return: The neglected financial work of Duvillard (1755 – 1832) in a comparative perspective * , 2006 .

[20]  E. Solomon The Arithmetic of Capital-Budgeting Decisions , 1956 .

[21]  Chung-Tsen Tsao,et al.  Assessing the Probabilistic Fuzzy Net Present Value for a Capital Investment Choice Using Fuzzy Arithmetic , 2005 .

[22]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[23]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[24]  Jinwu Gao,et al.  Fuzzy Chance-Constrained Programming for Capital Budgeting Problem with Fuzzy Decisions , 2005, FSKD.

[25]  Isabel Gutiérrez,et al.  Fuzzy numbers and net present value , 1989 .

[26]  Paul Berhanu Girma,et al.  Modified Net Present Value (MNPV): A New Technique for Capital Budgeting , 2004 .

[27]  Robert G. Beaves Net Present Value and Rate of Return: Implicit and Explicit Reinvestment Assumptions , 1988 .

[28]  S. S. Appadoo,et al.  Possibilistic Fuzzy Net Present Value Model and Application , 2014 .

[29]  Antonio Salvi,et al.  Corporate Finance: Theory and Practice , 2009 .

[30]  Steven A. Y. Lin The Modified Internal Rate of Return and Investment Criterion , 1976 .

[31]  Jaime Gil-Aluja Investment in Uncertainty , 1998 .

[32]  F. González Santoyo,et al.  MULTIPLE FUZZY IRR IN THE FINANCIAL DECISION ENVIRONMENT , 2001 .

[33]  Chui-Yu Chiu,et al.  Capital Budgeting Decisions With Fuzzy Projects , 1998 .

[34]  Zhiyi Chen,et al.  Uncertain Resource-Constrained Project Scheduling Problem with Net Present Value Criterion , 2016 .

[35]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[36]  Ludmila Dymowa Soft Computing in Economics and Finance , 2011, Intelligent Systems Reference Library.

[37]  Xiaoxia Huang,et al.  Credibility-based chance-constrained integer programming models for capital budgeting with fuzzy parameters , 2006, Inf. Sci..

[38]  James J. Buckley,et al.  Solving fuzzy equations in economics and finance , 1992 .

[39]  Christer Carlsson,et al.  On Mean Value and Variance of Interval-Valued Fuzzy Numbers , 2012, IPMU.

[40]  Ignacio Vélez-Pareja Ranking and Optimal Selection of Investments with Internal Rate of Return and Benefit-Cost Ratio: A Revision , 2010 .

[41]  Cengiz Kahraman,et al.  A Comparison of Wind Energy Investment Alternatives Using Interval-Valued Intuitionistic Fuzzy Benefit/Cost Analysis , 2016 .

[42]  David M. Shull OVERALL RATES OF RETURN: INVESTMENT BASES, REINVESTMENT RATES AND TIME HORIZONS , 1994 .

[43]  Luciano Stefanini,et al.  Average Rate of Return with Uncertainty , 2012, IPMU.

[44]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[45]  A. Kaufmann,et al.  Técnicas operativas de gestión para el tratamiento de la incertidumbre , 1987 .

[46]  Gastón Silverio Milanesi,et al.  A Measurement of Return for Mutually Exclusive Project under Ambiguity:Fuzzy Average Internal Rate of Return (FAIRR) , 2015 .

[47]  Ramon E. Moore,et al.  Interval analysis and fuzzy set theory , 2003, Fuzzy Sets Syst..

[48]  A. Lafuente Nuevas estrategias para el análisis financiero en la empresa , 2001 .

[49]  Sherif Ali Mohtady Mohamed,et al.  Modelling project investment decisions under uncertainty using possibility theory , 2001 .

[50]  John Hunter,et al.  Fuzzy interval methods in investment risk appraisal , 2004, Fuzzy Sets Syst..

[51]  Luciano Stefanini,et al.  Interval and fuzzy Average Internal Rate of Return for investment appraisal , 2014, Fuzzy Sets Syst..

[52]  Alexandre Assaf Neto,et al.  Retorno de investimento: abordagem matemática e contábil do lucro empresarial , 2005 .

[53]  J. Buckley,et al.  Fuzzy Mathematics in Finance , 1987 .

[54]  Jaime Gil-Aluja,et al.  Fuzzy Sets in the Management of Uncertainty , 2004 .

[55]  A. Kaufmann,et al.  FUZZY SUBSETS APPLICATIONS IN O.R. AND MANAGEMENT , 1986 .

[56]  J. N. Sheen,et al.  Fuzzy financial analyses of demand-side management alternatives , 2005 .

[57]  Robert G. Beaves,et al.  Technical Note: Defining Project Scale , 2005 .

[58]  Cengiz Kahraman,et al.  Fuzzy Future Value and Annual Cash Flow Analyses , 1999, RSFDGrC.

[59]  Jing-Shing Yao,et al.  Valuation by using a fuzzy discounted cash flow model , 2005, Expert Syst. Appl..

[60]  Amir Abbas Najafi,et al.  A Hybrid Genetic Algorithm to Maximize Net Present Value of Project Cash Flows in Resource Constrained Project Scheduling Problem with fuzzy parameters , 2016 .

[61]  Frank Crundwell,et al.  Finance for Engineers: Evaluation and Funding of Capital Projects , 2008 .

[62]  David M. Shull Efficient Capital Project Selection Through a Yield-Based Capital Budgeting Technique , 1992 .

[63]  Antonio Terceño Gómez,et al.  Using Fuzzy Set Theory to Analyse Investments and Select Portfolios of Tangible Investments in Uncertain Environments , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[64]  A. M. Gil-Lafuente Fuzzy Logic in Financial Analysis , 2005 .

[65]  Gilberto Brondani,et al.  ANÁLISE DE INVESTIMENTOS , 2006 .

[66]  Laura Uusitalo,et al.  An overview of methods to evaluate uncertainty of deterministic models in decision support , 2015, Environ. Model. Softw..

[67]  Ricardo Tanscheit,et al.  Modified Net Present Value under Uncertainties: An Approach Based on Fuzzy Numbers and Interval Arithmetic , 2012, IPMU.