An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations

Abstract Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while substantially reducing the time-to-solution. The XRMD code has been implemented on parallel computers based on spatial decomposition, achieving a weak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue Gene/Q cores for a 67.6 billion-atom system.

[1]  A. V. van Duin,et al.  Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. , 2007, Physical review letters.

[2]  Priya Vashishta,et al.  A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations. , 2014, The Journal of chemical physics.

[3]  Anders M N Niklasson,et al.  Extended Born-Oppenheimer molecular dynamics. , 2008, Physical review letters.

[4]  Priya Vashishta,et al.  Bonding and structure of ceramic-ceramic interfaces. , 2013, Physical review letters.

[5]  A. V. van Duin,et al.  Structure and dynamics of shock-induced nanobubble collapse in water. , 2010, Physical review letters.

[6]  Debasis Sengupta,et al.  High-Temperature Oxidation of SiC-Based Composite: Rate Constant Calculation from ReaxFF MD Simulations, Part II , 2013 .

[7]  Priya Vashishta,et al.  Molecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers. , 2010, Physical review letters.

[8]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[9]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[10]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[11]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[12]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[13]  Debasis Sengupta,et al.  Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I , 2012 .

[14]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[15]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[16]  Bartek Rajwa,et al.  A numerical recipe for accurate image reconstruction from discrete orthogonal moments , 2007, Pattern Recognit..

[17]  Donald W. Brenner,et al.  Three decades of many-body potentials in materials research , 2012 .

[18]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[19]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[20]  Anders M N Niklasson,et al.  Generalized extended Lagrangian Born-Oppenheimer molecular dynamics. , 2014, The Journal of chemical physics.

[21]  Anders M N Niklasson,et al.  Energy conserving, linear scaling Born-Oppenheimer molecular dynamics. , 2012, The Journal of chemical physics.

[22]  Rajiv K. Kalia,et al.  Performance Characteristics of Hardware Transactional Memory for Molecular Dynamics Application on BlueGene/Q: Toward Efficient Multithreading Strategies for Large-Scale Scientific Applications , 2013, 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum.

[23]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[24]  Ashish Sharma,et al.  De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers , 2008, Int. J. High Perform. Comput. Appl..

[25]  Ananth Grama,et al.  Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques , 2012, SIAM J. Sci. Comput..

[26]  Rajiv K. Kalia,et al.  DYNAMICS OF OXIDATION OF ALUMINUM NANOCLUSTERS USING VARIABLE CHARGE MOLECULAR-DYNAMICS SIMULATIONS ON PARALLEL COMPUTERS , 1999 .

[27]  Rajiv K. Kalia,et al.  A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations , 2008, Comput. Phys. Commun..

[28]  Paul Messina,et al.  Metascalable Quantum Molecular Dynamics Simulations of Hydrogen-on-Demand , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[29]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[30]  Priya Vashishta,et al.  Embrittlement of metal by solute segregation-induced amorphization. , 2010, Physical review letters.

[31]  Ananth Grama,et al.  Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques , 2012, Parallel Comput..

[32]  Rajiv K. Kalia,et al.  A scalable parallel algorithm for dynamic range-limited n-tuple computation in many-body molecular dynamics simulation , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[33]  Yang,et al.  Direct calculation of electron density in density-functional theory. , 1991, Physical review letters.

[34]  P. Hohenberg,et al.  Inhomogeneous electron gas , 2017, Resonance.

[35]  Anders M N Niklasson,et al.  First principles molecular dynamics without self-consistent field optimization. , 2013, The Journal of chemical physics.

[36]  Priya Vashishta,et al.  Hydrogen-on-demand using metallic alloy nanoparticles in water. , 2014, Nano letters.

[37]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[38]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[39]  Mark F. Horstemeyer,et al.  Electronic Structure Calculations , 2012 .

[40]  Aiichiro Nakano,et al.  Parallel multilevel preconditioned conjugate-gradient approach to variable-charge molecular dynamics , 1997 .

[41]  F. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994, Physical review. B, Condensed matter.