Smooth folds favoring gypsum precipitation in the Messinian Poniente marginal basin (Western Mediterranean)

Abstract The Poniente Basin lies in a folded sector located at the boundary between the eastern Betic Cordillera and the Alboran Sea. We reconstruct its 3D geometry combining depth-migrated 2D seismic reflection sections with borehole and surface structural data. The folds have been interplaying with sedimentation since late Miocene time. Growth strata allow us to reconstruct both the folding history and the average shortening rate. Two isolated antiforms began to grow during the late Tortonian, separated by an antiformal saddle point. A rectilinear fold-linkage sector between initially isolated short segments developed during the Messinian, eventually forming a subcylindrical ENE–WSW-trending antiform that has continued growing symmetrically since the Pleistocene. The antiform formed a barrier that favored Messinian evaporite deposition along the contiguous synform to the north. The vertical breakup between the lower parts of the synform and the barrier anticline culmination ranges from 500 to 700 m. In the last 7.2 Ma, the analyzed folds accommodated a shortening of 52 m/Ma along a 20 km-wide band. At a Mediterranean scale, our study sheds light on the propagation mode of barriers that favor the precipitation of gypsum in peripheral basins by restricting water exchange with the open sea, before the main phase of evaporite deposition occurred in the deep basin.

[1]  Carlos Marín-Lechado,et al.  Active faulting in the internal zones of the central Betic Cordilleras (SE, Spain) , 2003 .

[2]  J. Braga,et al.  Patterns and average rates of late Neogene-Recent uplift of the Betic Cordillera, SE Spain , 2003 .

[3]  J. Galindo‐Zaldívar,et al.  Nucleation, linkage and active propagation of a segmented Quaternary normal-dextral fault: the Loma del Viento fault (Campo de Dalías, Eastern Betic Cordillera, SE Spain) , 2012 .

[4]  V. García-Dueñas,et al.  Neogene tectonic evolution of the Alboran Sea from MCS data , 1992 .

[5]  J. Lofi,et al.  Seismic Atlas of the Messinian Salinity Crisis markers in the Mediterranean and Black Seas , 2011 .

[6]  J. Platt,et al.  44. THE ORIGIN AND TECTONIC HISTORY OF THE ALBORAN BASIN: INSIGHTS FROM LEG 161 RESULTS 1 , 1999 .

[7]  E. Mercier,et al.  Forward modelling of foreland basins progressive unconformities , 2002 .

[8]  W. Roest,et al.  Fracture zones in the North Atlantic from combined Geosat and Seasat data , 1992 .

[9]  D. Wilson,et al.  Chronology, causes and progression of the Messinian salinity crisis , 1999, Nature.

[10]  S. Lugli,et al.  Age refinement of the Messinian salinity crisis onset in the Mediterranean , 2013 .

[11]  J. Galindo‐Zaldívar,et al.  Intramontane basin development related to contractional and extensional structure interaction at the termination of a major sinistral fault: The Huércal-Overa Basin (Eastern Betic Cordillera) , 2010 .

[12]  Pedro Alfaro,et al.  Tectonic significance of the present relief of the Betic Cordillera , 2004 .

[13]  Fernando Pérez-Belzuz Geología del margen y cuenca del Mar de Alborán durante el Plio-Cuaternario: sedimentación y tectónica , 1999 .

[14]  R. Riding,et al.  Testing models for the Messinian salinity crisis: The Messinian record in Almería, SE Spain , 2006 .

[15]  Carlos Marín-Lechado,et al.  Active faults, seismicity and stresses in an internal boundary of a tectonic arc (Campo de Dalías and Níjar, southeastern Betic Cordilleras, Spain) , 2005 .

[16]  S. Lugli Messinian salinity crisis , 2009 .

[17]  J. Galindo‐Zaldívar,et al.  Recent and active faults and folds in the central-eastern Internal Zones of the Betic Cordillera , 2012 .

[18]  Jean-Laurent Mallet,et al.  Discrete smooth interpolation , 1989, TOGS.

[19]  J. Galindo‐Zaldívar,et al.  Faulted hybrid joints: an example from the Campo de Dalias (Betic Cordilleras, Spain) , 2004 .

[20]  W. Krijgsman,et al.  Astrochronology for the Messinian Sorbas basin (SE Spain) and orbital (precessional) forcing for evaporite cyclicity , 2001 .

[21]  J. M. Martín,et al.  Late Neogene–Recent uplift of the Cabo de Gata volcanic province, Almerı́a, SE Spain , 2003 .

[22]  J. Galindo‐Zaldívar,et al.  Is there an active subduction beneath the Gibraltar orogenic arc? Constraints from Pliocene to present-day stress field , 2011 .

[23]  J. Rodríguez-Fernández,et al.  Neogene evolution of the Campo de Dalias and the surrounding offshore areas - (Northeastern Alboran Sea) , 1993 .

[24]  W. Krijgsman,et al.  A quantitative analysis of the desiccation and re-filling of the Mediterranean during the Messinian Salinity Crisis , 2005 .

[25]  Carlos Marín-Lechado,et al.  Mountain Front Development by Folding and Crustal Thickening in the Internal Zone of the Betic Cordillera-Alboran Sea Boundary , 2007 .

[26]  J. A. Vera,et al.  Stratigraphic record and palaeogeographical context of the Neogene basins in the Betic Cordillera, Spain , 1992 .

[27]  W. Krijgsman,et al.  The Abad composite (SE Spain): a Messinian reference section for the Mediterranean and the APTS , 2001 .

[28]  José Vicente Pérez-Peña,et al.  Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain) , 2012 .

[29]  Lugli Stefano,et al.  The Primary Lower Gypsum in the Mediterranean: a new facies interpretation for the first stage of the Messinian salinity crisis. , 2010 .

[30]  Klaudia F. Kuiper,et al.  Tectonic control for evaporite formation in the Eastern Betics (Tortonian; Spain) , 2006 .

[31]  J. Lofi,et al.  The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences , 2014 .

[32]  G. Lister,et al.  Relative motions of Africa, Iberia and Europe during Alpine orogeny , 2002 .

[33]  R. Butler,et al.  Calibrating the duration and timing of the Messinian salinity crisis in the Mediterranean: linked tectonoclimatic signals in thrust-top basins of Sicily , 1999, Journal of the Geological Society.

[34]  H. M. Pedley,et al.  Controls on faunal and sediment cyclicity within the Tripoli and Calcare di Base basins (Late Miocene) of central Sicily , 1993 .

[35]  Marco Roveri,et al.  Tectonic and climatic control on the Late Messinian sedimentary evolution of the Nijar Basin (Betic Cordillera, Southern Spain) , 2012 .

[36]  J. Goy,et al.  Synthesis of the quaternary in the almeria littoral neotectonic activity and its morphologic features, western betics, Spain , 1986 .

[37]  D. Lozano,et al.  Mapa geologico de Espana , 1919 .

[38]  J. Galindo‐Zaldívar,et al.  Recent large fold nucleation in the upper crust: Insight from gravity, magnetic, magnetotelluric and seismicity data (Sierra de Los Filabres–Sierra de Las Estancias, Internal Zones, Betic Cordillera) , 2009 .

[39]  D. García-Castellanos,et al.  Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc , 2011, Nature.

[40]  W. Krijgsman,et al.  The Messinian of the Nijar Basin (SE Spain): sedimentation, depositional environments and paleogeographic evolution , 2003 .

[41]  J. A. Rodríguez El Plioceno del SE de la Península Ibérica (provincia de Almería).Síntesis estratigráfica,sedimentaria,bioestratigráfica y paleogeográfica , 1998 .

[42]  S. Lugli,et al.  The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis , 2008 .

[43]  J. Vergés,et al.  Progressive evolution of a fault-related fold pair from growth strata geometries, Sant Llorenç de Morunys, SE Pyrenees , 1997 .