Spherical Distribution of 5 Points with Maximal Distance Sum

In this paper, we consider the problem of spherical distribution of 5 points, that is, how to configure 5 points on the unit sphere such that the mutual distance sum is maximal. It is conjectured that the sum of distances is maximal if the 5 points form a bipyramid distribution with two points positioned at opposite poles of the sphere and the other three positioned uniformly on the equator. We study this problem using interval methods and related techniques, and give a computer-assisted proof.

[1]  Joel Berman,et al.  Optimizing the Arrangement of Points on the Unit Sphere , 1977 .

[2]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[3]  K. Stolarsky,et al.  The sum of the distances to N points on a sphere , 1975 .

[4]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere. II , 1972 .

[5]  J. Rohn Positive Definiteness and Stability of Interval Matrices , 1994, SIAM J. Matrix Anal. Appl..

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  G. Pólya,et al.  Über den transfiniten Durchmesser (Kapazitätskonstante) von ebenen und räumlichen Punktmengen. , 1931 .

[8]  D. Legg,et al.  Discrete Logarithmic Energy on the Sphere , 2002 .

[9]  K. Stolarsky Sums of distances between points on a sphere. II , 1972 .

[10]  Mehrdad Shahshahani,et al.  Distributing Points on the Sphere, I , 2003, Exp. Math..

[11]  K. Stolarsky,et al.  Spherical distributions of $N$ points with maximal distance sums are well spaced , 1975 .

[12]  L. Fejes Tóth,et al.  On the sum of distances determined by a pointset , 1956 .

[13]  Henry Cohn,et al.  Universally optimal distribution of points on spheres , 2006, math/0607446.

[14]  W. Fleming Functions of Several Variables , 1965 .

[15]  R. Alexander Generalized sums of distances , 1975 .

[16]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere , 1972 .

[17]  Nikolay N. Andreev,et al.  An Extremal Property Of The Icosahedron , 1996 .

[18]  E. Hille,et al.  Some geometric extremal problems , 1966, Journal of the Australian Mathematical Society.

[19]  V. Stahl Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations , 2007 .

[20]  J. Beck Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete Geometry , 1984 .

[21]  G. Björck,et al.  Distributions of positive mass, which maximize a certain generalized energy integral , 1956 .

[22]  Murray S. Klamkin,et al.  Inequalities for Sums of Distances , 1973 .

[23]  K. Stolarsky,et al.  THE SUM OF THE DISTANCES TO CERTAIN POINTSETS ON THE UNIT CIRCLE , 1975 .

[24]  V. A. Yudin,et al.  Extremal dispositions of points on the sphere , 1997 .

[25]  Richard Evan Schwartz The 5 Electron Case of Thomson's Problem , 2010 .

[26]  Wei-Bin Gao,et al.  A necessary and sufficient condition for the positive-definiteness of interval symmetric matrices , 1986 .

[27]  S. Smale Mathematical problems for the next century , 1998 .

[28]  Glyn Harman,et al.  Sums of distances between points of a sphere , 1982 .

[29]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[30]  Minghui Jiang,et al.  On the sum of distances along a circle , 2008, Discret. Math..

[31]  Zoltán Füredi,et al.  The second and the third smallest distances on the sphere , 1993 .