In recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 μm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol. Imaging of the brain autofluorescence in 3D reveals details of the neuroanatomy, while the use of fluorescent labels displays the vascular network and amyloid deposition in 5xFAD mice, an important model of Alzheimer’s disease (AD). Finally, the OPT images are compared with histological slices. © 2017 Optical Society of America OCIS codes: (110.0110) Imaging systems; (110.6880) Three-dimensional image acquisition; (110.6960) Tomography; (170.0170) Medical optics and biotechnology; (170.2520) Fluorescence microscopy;(180.0180) Microscopy; (180.6900) Three-dimensional microscopy. References and links 1. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7(8), 603–614 (2010). 2. A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, S. Zeng, and Q. Luo, “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science 330(6009), 1404–1408 (2010). 3. H. Gong, S. Zeng, C. Yan, X. Lv, Z. Yang, T. Xu, Z. Feng, W. Ding, X. Qi, A. Li, J. Wu, and Q. Luo, “Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution,” Neuroimage 74, 87–98 (2013); 4. J. Huisken, and D. Y. R. Stainier, “Selective plane illumination microscopy techniques in developmental biology,” Development 136(12), 1963–1975 (2009). 5. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer III, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014). 6. A. Kaufmann, M. Mickoleit, M. Weber, and J. Huisken, “Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope,” Development 139(17), 3242–3247 (2012). 7. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010). 8. H.-U. Dodt, U. Leischner, A. Schierloh, N. Jährling, C. P. Mauch, K. Deininger, J. M. Deussing, M. Eder, W. Zieglgänsberger, and K. Becker, “Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain,” Nat. Methods 4(4), 331–336 (2007). 9. L. Silvestri, A. L. A. Mascaro, I. Costantini, L. Sacconi, and F. S. Pavone, “Correlative two-photon and light sheet microscopy,” Methods 66, 268–272 (2014). Vol. 8, No. 12 | 1 Dec 2017 | BIOMEDICAL OPTICS EXPRESS 5637 #301816 Journal © 2017 https://doi.org/10.1364/BOE.8.005637 Received 11 Jul 2017; revised 31 Oct 2017; accepted 31 Oct 2017; published 15 Nov 2017 10. E. Lugo-Hernandez, A. Squire, N. Hagemann, A. Brenzel, M. Sardari, J. Schlechter, E. H. Sanchez-Mendoza, M. Gunzer, A. Faissner, and D. M. Hermann, “3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy,” J. Cereb. Blood Flow Metab. 0(00), 1–13 (2017). 11. N. Jährling, K. Becker, B. M. Wegenast-Braun, S. A. Grathwohl, M. Jucker, and H.-U. Dodt, “Cerebral β-amyloidosis in mice investigated by ultramicroscopy,” PLoS One 10(5), e0125418 (2015). 12. E. G. Reynaud, J. Peychl, J. Huisken, and P. Tomancak, “Guide to light-sheet microscopy for adventurous biologists,” Nat. Methods 12(1), 30–34 (2015). 13. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). 14. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988). 15. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003). 16. M. D. Wong, J. Dazai, J. R. Walls, N. W. Gale, and R. M. Henkelman, “Design and Implementation of a custom built optical projection tomography system,” PLoS One 8(9), e73491 (2013). 17. A. Arranz, D. Dong, S. Zhu, M. Rudin, C. Tsatsanis, J. Tian, and J. Ripoll, “Helical optical projection tomography,” Opt. Express 21(22), 25912–25925 (2013). 18. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol. 50(19), 4645–4665 (2005). 19. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biol. 52(10), 2775–2790 (2007). 20. D. Dong, S. Zhu, C. Qin, V. Kumar, J. V. Stein, S. Oehler, C. Savakis, J. Tian, and J. Ripoll, “Automated recovery of the center of rotation in optical projection tomography in the presence of scattering,” IEEE J. Biomed. Health Inform. 17(1), 198–204 (2013). 21. C. Vinegoni, D. Razansky, J.-L. Figueiredo, M. Nahrendorf, V. Ntziachristos, and R. Weissleder, “Normalized Born ratio for fluorescence optical projection tomography,” Opt. Lett. 34(3), 319–321 (2009). 22. T. Correia, N. Lockwood, S. Kumar, J. Yin, M.-C. Ramel, N. Andrews, M. Katan, L. Bugeon, M. J. Dallman, J. McGinty, P. Frankel, P. M. W. French, and S. Arridge, “Accelerated optical projection tomography applied to in vivo imaging of zebrafish,” PLoS One 10(8), e0136213 (2015). 23. C. Vinegoni, L. Fexon, P. F. Feruglio, M. Pivovarov, J.-L. Figueiredo, M. Nahrendorf, A. Pozzo, A. Sbarbati, and R. Weissleder, “High throughput transmission optical projection tomography using low cost graphics processing unit,” Opt. Express 17(25), 22320–22332 (2009). 24. A. Bassi, L. Fieramonti, C. D’Andrea, M. Mione, and G. Valentini, “In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography,” J. Biomed. Opt. 16(10), 100502 (2011). 25. A. Arranz, D. Dong, S. Zhu, C. Savakis, J. Tian, and J. Ripoll, “In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster,” Sci. Rep. 4, 7325 (2014). 26. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008). 27. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express 2(5), 1340–1350 (2011). 28. K. Lee, J. Avondo, H. Morrison, L. Blot, M. Stark, J. Sharpe, A. Bangham, and E. Coen, “Visualizing plant development and gene expression in three dimensions using optical projection tomography,” Plant Cell 18(9), 2145–2156 (2006). 29. K. J. I. Lee, G. M. Calder, C. R. Hindle, J. L. Newman, S. N. Robinson, J. J. H. Y. Avondo, and E. S. Coen, “Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity,” J. Exp. Bot. 68(3), 527–538 (2016). 30. T. Alanentalo, C. E. Lorén, Å. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of isletinfiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13(5), 054070 (2008). 31. T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, Å. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59(7), 1756–1764 (2010). 32. S. Gupta, R. Utoft, H. Hasseldam, A. Schmidt-Christensen, T. D. Hannibal, L. Hansen, N. Fransén-Pettersson, N. Agarwal-Gupta, B. Rozell, Â. Andersson, and D. Holmberg, “Global and 3D spatial assessment of neuroinflammation in rodent models of multiple sclerosis,” PLoS One 8(10), e76330 (2013). 33. J. A. Gleave, M. D. Wong, J. Dazai, M. Altaf, R. M. Henkelman, J. P. Lerch, and B. J. Nieman, “Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging,” Physiol. Genomics 44(15), 778–785 (2012). 34. J. A. Gleave, J. P. Lerch, R. M. Henkelman, and B. J. Nieman, “A method for 3D immunostaining and optical imaging of the mouse brain demonstrated in neural progenitor cells,” PLoS One 8(8), e72039 (2013). 35. H. Oakley, S. L. Cole, S. Logan, E. Maus, P. Shao, J. Craft, A. Guillozet-Bongaarts, M. Ohno, J. Disterhoft, L. Van Vol. 8, No. 12 | 1 Dec 2017 | BIOMEDICAL OPTICS EXPRESS 5638
[1]
J. Vane,et al.
Optical Projection Tomography as a Tool for 3D Microscopy and Gene Expression Studies
,
2002
.
[2]
James Sharpe,et al.
Optical projection tomography as a new tool for studying embryo anatomy
,
2003,
Journal of anatomy.
[3]
Johnathon R. Walls,et al.
Correction of artefacts in optical projection tomography
,
2005,
Physics in medicine and biology.
[4]
J. Sharpe,et al.
Visualizing Plant Development and Gene Expression in Three Dimensions Using Optical Projection Tomography[W]
,
2006,
The Plant Cell Online.
[5]
A. Schierloh,et al.
Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain
,
2007,
Nature Methods.
[6]
Allan R. Jones,et al.
Genome-wide atlas of gene expression in the adult mouse brain
,
2007,
Nature.
[7]
James Sharpe,et al.
Resolution improvement in emission optical projection tomography
,
2007,
Physics in medicine and biology.
[8]
Michael Unser,et al.
User‐friendly semiautomated assembly of accurate image mosaics in microscopy
,
2007,
Microscopy research and technique.
[9]
R. Mark Henkelman,et al.
Three-Dimensional Analysis of Vascular Development in the Mouse Embryo
,
2008,
PloS one.
[10]
Vasilis Ntziachristos,et al.
In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography
,
2007,
Nature Methods.
[11]
James Sharpe,et al.
High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas.
,
2008,
Journal of biomedical optics.
[12]
Jan Huisken,et al.
Selective plane illumination microscopy techniques in developmental biology
,
2009,
Development.
[13]
Vasilis Ntziachristos,et al.
Normalized Born ratio for fluorescence optical projection tomography.
,
2009,
Optics letters.
[14]
Ralph Weissleder,et al.
High throughput transmission optical projection tomography using low cost graphics processing unit.
,
2009,
Optics express.
[15]
Q. Luo,et al.
Micro-Optical Sectioning Tomography to Obtain a High-Resolution Atlas of the Mouse Brain
,
2010,
Science.
[16]
James Sharpe,et al.
Quantification and Three-Dimensional Imaging of the Insulitis-Induced Destruction of β-Cells in Murine Type 1 Diabetes
,
2010,
Diabetes.
[17]
V. Ntziachristos.
Going deeper than microscopy: the optical imaging frontier in biology
,
2010,
Nature Methods.
[18]
Philipp J. Keller,et al.
Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy
,
2010,
Nature Methods.
[19]
Cosimo D'Andrea,et al.
In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography.
,
2011,
Journal of biomedical optics.
[20]
Paul M. W. French,et al.
In vivo fluorescence lifetime optical projection tomography
,
2011,
Biomedical optics express.
[21]
Johannes E. Schindelin,et al.
Fiji: an open-source platform for biological-image analysis
,
2012,
Nature Methods.
[22]
Jun Dazai,et al.
Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging.
,
2012,
Physiological genomics.
[23]
R. Mark Henkelman,et al.
Design and Implementation of a Custom Built Optical Projection Tomography System
,
2013,
PloS one.
[24]
K. Deisseroth,et al.
CLARITY for mapping the nervous system
,
2013,
Nature Methods.
[25]
Shaoqun Zeng,et al.
Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution
,
2013,
NeuroImage.
[26]
Takeshi Imai,et al.
SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction
,
2013,
Nature Neuroscience.
[27]
D. Holmberg,et al.
Global and 3 D Spatial Assessment of Neuroinflammation in Rodent Models of Multiple Sclerosis
,
2013
.
[28]
Jie Tian,et al.
Helical optical projection tomography.
,
2013,
Optics express.
[29]
Jie Tian,et al.
Automated Recovery of the Center of Rotation in Optical Projection Tomography in the Presence of Scattering
,
2013,
IEEE Journal of Biomedical and Health Informatics.
[30]
Jie Tian,et al.
In-vivo Optical Tomography of Small Scattering Specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster
,
2014,
Scientific Reports.
[31]
Pavel Tomancak,et al.
Guide to light-sheet microscopy for adventurous biologists
,
2014,
Nature Methods.
[32]
Wesley R. Legant,et al.
Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution
,
2014,
Science.
[33]
Simon Arridge,et al.
Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish
,
2015,
PloS one.
[34]
Hans-Ulrich Dodt,et al.
Cerebral β-Amyloidosis in Mice Investigated by Ultramicroscopy
,
2015,
PloS one.
[35]
Helmut Lippert,et al.
Light sheet microscope
,
2016
.
[36]
Nina Hagemann,et al.
3D visualization and quantification of microvessels in the whole ischemic mouse brain using solvent-based clearing and light sheet microscopy
,
2017,
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.
[37]
E. Coen,et al.
Macro optical projection tomography for large scale 3D imaging of plant structures and gene activity
,
2016,
Journal of experimental botany.