Inequalities for orthonormal Laguerre polynomials

Let M"k^@a(x)=L"k^(^@a^)(x)^2e^-^xx^@a^+^1, where L"k^(^@a^)(x) is the orthonormal Laguerre polynomial of degree k. For @a>=24 we will establish the following inequality 10^-^8=0M"k^@a(x) =35, and the lower one for k>=2x10^1^0. Sharp pointwise estimates on M"k^@a and related functions for x>=0 are also given.

[1]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[2]  Tamás Erdélyi,et al.  Generalized Jacobi Weights, Christoffel Functions, and Jacobi-polynomials (vol 25, Pg 602, 1994) , 1994 .

[3]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[4]  M. Michalska,et al.  A new bound for the Laguerre polynomials , 2001 .

[5]  R. Sakai,et al.  Orthonormal polynomials with generalized Freud-type weights , 2003, J. Approx. Theory.

[6]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[7]  Doron S. Lubinsky,et al.  Orthogonal Polynomials for Exponential Weights , 2001 .

[8]  Doron S. Lubinsky,et al.  Orthogonal polynomials for exponential weights x2rhoe-2Q(x) on [0, d) , 2005, J. Approx. Theory.

[9]  Ilia Krasikov Inequalities of Laguerre polynomials , 2005 .

[10]  Ilia Krasikov A ] 1 2 N ov 2 00 2 On zeros of polynomials and allied functions satisfying second order differential equations , 2002 .

[11]  I. Krasikov New bounds on the Hermite polynomials , 2004, math/0401310.

[12]  Ilia Krasikov On the maximum value of Jacobi polynomials , 2005, J. Approx. Theory.

[13]  Tamás Erdélyi,et al.  Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials , 1994 .

[14]  Attila Máté,et al.  Oscillatory behavior of orthogonal polynomials , 1986, Acta Mathematica Hungarica.

[15]  Ilia Krasikov On extreme zeros of classical orthogonal polynomials , 2003 .

[16]  Roderick Wong,et al.  Uniform Asymptotic Expansions of Laguerre Polynomials , 1988 .

[17]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .