Origins of high–performance giant dielectric properties in TiO2 co-doped with aliovalent ions via broadband dielectric spectroscopy

[1]  Zhanggui Hu,et al.  High dielectric performance and multifarious polarizations in (Lu + Ta) co-doped TiO2 ceramics , 2021, Journal of Asian Ceramic Societies.

[2]  Chunchang Wang,et al.  Mechanisms of the relaxations in (In + Nb) co-doped TiO2 ceramics , 2021 .

[3]  X. Chao,et al.  Colossal dielectric response in CdAl Cu3-Ti4O12 perovskite ceramics , 2021 .

[4]  X. Chao,et al.  Ag+/W6+ co-doped TiO2 ceramic with colossal permittivity and low loss , 2020 .

[5]  Dong Xu,et al.  Colossal permittivity characteristics and mechanism of (Sr, Ta) co-doped TiO2 ceramics , 2020, Journal of Materials Science: Materials in Electronics.

[6]  X. Chao,et al.  Enhanced dielectric performance of (Ag1/4Nb3/4)0.01Ti0.99O2 ceramic prepared by a wet-chemistry method , 2020, Ceramics International.

[7]  X. Chao,et al.  Origin of colossal permittivity and low dielectric loss in Na1/3Cd1/3Y1/3Cu3Ti4O12 ceramics , 2020, Ceramics International.

[8]  Yun Liu,et al.  Colossal permittivity of (Li, Nb) co-doped TiO2 ceramics , 2019, Ceramics International.

[9]  Liping Li,et al.  An insight into the polarization mechanism of rutile based oxides with a wide doping levels in the TiO2-CuO-TaO2.5 ternary system , 2019, Journal of Alloys and Compounds.

[10]  A. Gowen,et al.  Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties , 2019, Results in Physics.

[11]  X. Chao,et al.  Good thermal stability, giant permittivity and low dielectric loss for X9R–type (Ag 1/4 Nb 3/4 ) 0.005 Ti 0.995 O 2 ceramics , 2018, Journal of the American Ceramic Society.

[12]  Peng Liu,et al.  Colossal permittivity and dielectric relaxations in Tl + Nb co-doped TiO2 ceramics , 2018, Ceramics International.

[13]  Chao Yang,et al.  Colossal permittivity in TiO2 co‐doped by donor Nb and isovalent Zr , 2018 .

[14]  Fangbin Wei,et al.  Co-doping effects of A-site Y3+ and B-site Al3+ on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics , 2017 .

[15]  T. Frankcombe,et al.  Colossal permittivity behavior and its origin in rutile (Mg1/3Ta2/3)xTi1-xO2 , 2017, Scientific Reports.

[16]  Xuan Luo,et al.  Niobium and divalent‐modified titanium dioxide ceramics: Colossal permittivity and composition design , 2017 .

[17]  S. Maensiri,et al.  Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3 + and Ta5 + co-doped rutile-TiO2 ceramics , 2017 .

[18]  Chao Yang,et al.  Colossal permittivity of (Mg + Nb) co-doped TiO2 ceramics with low dielectric loss , 2017 .

[19]  S. Maensiri,et al.  Surface barrier layer effect in (In + Nb) co‐doped TiO2 ceramics: An alternative route to design low dielectric loss , 2017 .

[20]  H. Fan,et al.  Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2 ceramics , 2016 .

[21]  J. Petzelt,et al.  Electrode effects in dielectric spectroscopy measurements on (Nb$+$In) co-doped TiO$_2$ , 2016 .

[22]  Yongli Song,et al.  Origin of colossal dielectric permittivity of rutile Ti0.9In0.05Nb0.05O2: single crystal and polycrystalline , 2016, Scientific Reports.

[23]  Yanqing Wu,et al.  Huge low-frequency dielectric response of (Nb,In)-doped TiO2 ceramics , 2015 .

[24]  Yun Liu,et al.  Colossal permittivity properties of Zn,Nb co-doped TiO2 with different phase structures , 2015 .

[25]  Yun Liu,et al.  Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO2 Ceramics: Compositional Gradient and Local Structure , 2015 .

[26]  Fei Li,et al.  Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics , 2014 .

[27]  T. Vogt,et al.  Colossal permittivity materials: Doping for superior dielectrics. , 2013, Nature materials.

[28]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[29]  L. Kavan,et al.  Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). , 2012, Physical chemistry chemical physics : PCCP.

[30]  D. Sinclair,et al.  Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics , 2012 .

[31]  Wentao Yang,et al.  Dielectric relaxation and polaronic hopping in Al-substituted Sm1.5Sr0.5NiO4 ceramics , 2010 .

[32]  Ming-Jen Pan,et al.  A brief introduction to ceramic capacitors , 2010, IEEE Electrical Insulation Magazine.

[33]  H. Sakata,et al.  Microstructure and dielectric properties of NaxTiyNi1−x−yO (x = 0.05–0.30, y = 0.02) , 2008 .

[34]  X. Chen,et al.  Dielectric relaxations in Ca(Fe1∕2Nb1∕2)O3 complex perovskite ceramics , 2007 .

[35]  H. Sakata,et al.  Effect of dc electric field on conductivity and giant permittivity of KxTiyNi1−x−yO , 2007 .

[36]  T. Fang,et al.  High dielectric permittivity of Li and Ta codoped NiO ceramics , 2007 .

[37]  Ce-Wen Nan,et al.  High permittivity Li and Al doped NiO ceramics , 2004 .

[38]  R. Smith,et al.  Large Dielectric Constant and Maxwell-Wagner Relaxation in Bi 2/3 Cu 3 Ti 4 O 12 , 2004 .

[39]  P. Lunkenheimer,et al.  Nonintrinsic origin of the colossal dielectric constants in Ca Cu 3 Ti 4 O 12 , 2004, cond-mat/0403119.

[40]  Yuan Deng,et al.  Giant dielectric permittivity observed in Li and Ti doped NiO. , 2002, Physical review letters.

[41]  S. Prosandeev,et al.  High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb) , 2002, cond-mat/0209015.

[42]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[43]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[44]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[45]  R. Siegel,et al.  Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2 , 1990 .

[46]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .