Visual search reranking via adaptive particle swarm optimization

Visual search reranking involves an optimization process that uses visual content to recover the ''genuine'' ranking list from the helpful but noisy one generated by textual search. This paper presents an evolutionary approach, called Adaptive Particle Swarm Optimization (APSO), for unsupervised visual search reranking. The proposed approach incorporates the visual consistency regularization and the ranking list distance. In addition, to address the problem that existing list distance fails to capture the genuine disagreement between two ranking lists, we propose a numerical ranking list distance. Furthermore, the parameters in APSO are self-tuned adaptively according to the fitness values of the particles to avoid being trapped in local optima. We conduct extensive experiments on automatic search task over TRECVID 2006-2007 benchmarks and show significant and consistent improvements over state-of-the-art works.

[1]  Francesco G. B. De Natale,et al.  Evolutionary image retrieval , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[2]  Shengrui Wang,et al.  Computational measures corresponding to perceptual textural features , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[3]  Paolo Rocca,et al.  Content-based image retrieval by a semi-supervised Particle Swarm Optimization , 2008, 2008 IEEE 10th Workshop on Multimedia Signal Processing.

[4]  Keisuke Kameyama,et al.  Relevance Optimization in Image Database Using Feature Space Preference Mapping and Particle Swarm Optimization , 2007, ICONIP.

[5]  Shih-Fu Chang,et al.  Video search reranking via information bottleneck principle , 2006, MM '06.

[6]  Tao Mei,et al.  Learning to video search rerank via pseudo preference feedback , 2008, 2008 IEEE International Conference on Multimedia and Expo.

[7]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[8]  Meng Wang,et al.  MSRA-USTC-SJTU at TRECVID 2007: High-Level Feature Extraction and Search , 2007, TRECVID.

[9]  Yong Wang,et al.  Combining global, regional and contextual features for automatic image annotation , 2009, Pattern Recognit..

[10]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[11]  Paolo Rosso,et al.  A DISCRETE PARTICLE SWARM OPTIMIZER FOR CLUSTERING SHORT-TEXT CORPORA , 2008 .

[12]  Yoshikazu Fukuyama,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 2000 .

[13]  Xian-Sheng Hua,et al.  Bayesian video search reranking , 2008, ACM Multimedia.

[14]  Tao Mei,et al.  Optimizing Visual Search Reranking via Pairwise Learning , 2011, IEEE Transactions on Multimedia.

[15]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[16]  Chong-Wah Ngo,et al.  Co-reranking by mutual reinforcement for image search , 2010, CIVR '10.

[17]  Shih-Fu Chang,et al.  Video search reranking through random walk over document-level context graph , 2007, ACM Multimedia.

[18]  Tao Mei,et al.  Optimizing video search reranking via minimum incremental information loss , 2008, MIR '08.

[19]  Francesco G. B. De Natale,et al.  A Stochastic Approach to Image Retrieval Using Relevance Feedback and Particle Swarm Optimization , 2010, IEEE Transactions on Multimedia.

[20]  Tao Mei,et al.  CrowdReranking: exploring multiple search engines for visual search reranking , 2009, SIGIR.

[21]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Rong Yan,et al.  Co-retrieval: A Boosted Reranking Approach for Video Retrieval , 2004, CIVR.

[23]  Djemel Ziou,et al.  An approach for dynamic combination of region and boundary information in segmentation , 2008, 2008 19th International Conference on Pattern Recognition.

[24]  Xian-Sheng Hua,et al.  Video search re-ranking via multi-graph propagation , 2007, ACM Multimedia.

[25]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[26]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[27]  Xiaoqin Zhang,et al.  Sequential particle swarm optimization for visual tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Rong Yan,et al.  Multimedia Search with Pseudo-relevance Feedback , 2003, CIVR.

[29]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[30]  Tao Mei,et al.  Multigraph-Based Query-Independent Learning for Video Search , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Shengrui Wang,et al.  Autocovariance-based perceptual textural features corresponding to human visual perception , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[32]  K. Sparck Jones,et al.  Simple, proven approaches to text retrieval , 1994 .