Adaptive optimal transport
暂无分享,去创建一个
[1] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[2] Esteban G. Tabak,et al. Conditional expectation estimation through attributable components , 2018 .
[3] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[4] Takafumi Kanamori,et al. Approximating Mutual Information by Maximum Likelihood Density Ratio Estimation , 2008, FSDM.
[5] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[6] Martin J. Wainwright,et al. Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization , 2008, IEEE Transactions on Information Theory.
[7] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[8] Hossein Mobahi,et al. Learning with a Wasserstein Loss , 2015, NIPS.
[9] Mark Minasi. The minimax algorithm , 1989 .
[10] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[11] Esteban G. Tabak,et al. Sample‐Based Optimal Transport and Barycenter Problems , 2019, Communications on Pure and Applied Mathematics.
[12] Sebastian Nowozin,et al. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization , 2016, NIPS.
[13] Gabriel Peyré,et al. Computational Optimal Transport , 2018, Found. Trends Mach. Learn..
[14] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[15] Christian L'eonard,et al. O C ] 1 1 N ov 2 01 0 FROM THE SCHRÖDINGER PROBLEM TO THE MONGE-KANTOROVICH , 2010 .
[16] Tryphon T. Georgiou,et al. On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint , 2014, J. Optim. Theory Appl..
[17] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[18] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[19] C. Villani. Topics in Optimal Transportation , 2003 .
[20] S. Varadhan,et al. Asymptotic evaluation of certain Markov process expectations for large time , 1975 .
[21] Esteban G. Tabak,et al. Explanation of Variability and Removal of Confounding Factors from Data through Optimal Transport , 2018 .
[22] M. Pavon. A variational derivation of a class of BFGS-like methods , 2017, Optimization.
[23] L. Kantorovich. On the Translocation of Masses , 2006 .