Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid–structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

[1]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[2]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[3]  Tayfun E. Tezduyar,et al.  Estimation of element-based zero-stress state for arterial FSI computations , 2014 .

[4]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[5]  Edgar Knobloch,et al.  Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[7]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[8]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[9]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[10]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[11]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[12]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[13]  William M. Gelbart,et al.  The "New" Science of "Complex Fluids" , 1996 .

[14]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[15]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[16]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[17]  M. Païdoussis Fluid-structure interactions , 1998 .

[18]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[19]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[20]  Eugenio Oñate,et al.  A COMPRESSIBLE LAGRANGIAN FRAMEWORK FOR MODELING THE FLUID–STRUCTURE INTERACTION IN THE UNDERWATER IMPLOSION OF AN ALUMINUM CYLINDER , 2013 .

[21]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[22]  Christine Ikeda,et al.  Fluid-Structure Interactions: Implosions of Shell Structures and Wave Impact on a Flat Plate , 2012 .

[23]  S. Turner Underwater implosion of glass spheres. , 2007, The Journal of the Acoustical Society of America.

[24]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[25]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[26]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[27]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[28]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[29]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[30]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[31]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[32]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[33]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[34]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[35]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[36]  J. E. Dunn,et al.  On the thermomechanics of interstitial working , 1985 .

[37]  Ignasi Colominas,et al.  Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase‐field averaged descriptions via isogeometric analysis , 2013, International journal for numerical methods in biomedical engineering.

[38]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[39]  Xiao Yun Xu,et al.  Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates , 2014 .

[40]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[41]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[42]  J. Tinevez,et al.  Polar actomyosin contractility destabilizes the position of the cytokinetic furrow , 2011, Nature.

[43]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[44]  Tayfun E. Tezduyar,et al.  Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces , 1994 .

[45]  Yuri Bazilevs Computational Fluid — Structure Interaction with Applications , 2014 .

[46]  Ju Liu Thermodynamically consistent modeling and simulation of multiphase flows , 2014 .

[47]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[48]  Wouter-Jan Rappel,et al.  Coupling actin flow, adhesion, and morphology in a computational cell motility model , 2012, Proceedings of the National Academy of Sciences.

[49]  S. Mittal,et al.  Computation of unsteady incompressible flows with the stabilized finite element methods: Space-time formulations, iterative strategies and massively parallel implementations , 1992 .

[50]  Tayfun E. Tezduyar,et al.  Finite element methods for flow problems with moving boundaries and interfaces , 2001 .

[51]  Arthur Seiji Daniel Rallu,et al.  A multiphase fluid-structure computational framework for underwater implosion problems , 2009 .

[52]  Yuri Bazilevs,et al.  Computational Fluid-Structure Interaction: Methods and Applications , 2013 .

[53]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[54]  Charbel Farhat,et al.  A higher-order generalized ghost fluid method for the poor for the three-dimensional two-phase flow computation of underwater implosions , 2008, J. Comput. Phys..

[55]  Unconditionally stable method and numerical solution of the hyperbolic phase-field crystal equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[56]  I. Steinbach Phase-field models in materials science , 2009 .

[57]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[58]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[59]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[60]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[61]  Yuri Bazilevs,et al.  Fluid–structure interaction simulation of pulsatile ventricular assist devices , 2013, Computational Mechanics.

[62]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .

[63]  M. Uschold,et al.  Methods and applications , 1953 .

[64]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[65]  T. Belytschko,et al.  Robust and provably second‐order explicit–explicit and implicit–explicit staggered time‐integrators for highly non‐linear compressible fluid–structure interaction problems , 2010 .

[66]  Ruben Juanes,et al.  Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. , 2008, Physical review letters.

[67]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[68]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[69]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[70]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[71]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[72]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[73]  Ju Liu,et al.  Functional entropy variables: A new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier-Stokes-Korteweg equations , 2013, J. Comput. Phys..

[74]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[75]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[76]  Eugenio Oñate,et al.  A compressible Lagrangian framework for the simulation of the underwater implosion of large air bubbles , 2013 .

[77]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[78]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.

[79]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[80]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[81]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[82]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[83]  Ruben Juanes,et al.  Three-dimensional simulation of unstable gravity-driven infiltration of water into a porous medium , 2013, J. Comput. Phys..

[84]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[85]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[86]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[87]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .