Slow viscous flow inside a torus ― the resistance of small tortuous blood vessels

The hydrodynamic resistance of a buckled microvessel in the form of a tightly would helix is approximated by studing the Stokes flow inside a torus. The unidirectional flow is driven by a constant tangential pressure gradient. The solution is obtained by an eigenfunction expansion in toroidal coordinates. The ratio of volume flow carried by the torus to that carried by a straight tube is computed as a function of the vessel radius: coil radius ratio. An asymptotic expansion for this flux ratio is also obtained. The results show that the resistance of a moderately curved vessel is slightly less than the resistance of a straight one, whereas the resistance of a greatly curved vessel is at most 3% greater than the straight one.