A systematic approach for designing analytical dynamics and servo control of constrained mechanical systems

A systematic approach for designing analytical dynamics and servo control of constrained mechanical systems is proposed. Fundamental equation of constrained mechanical systems is first obtained according to Udwadia-Kalaba approach which is applicable to holonomic and nonholonomic constrained systems no matter whether they satisfy the D'Alember's principle. The performance specifications are modeled as servo constraints. Constraint-following servo control is used to realize the servo constraints. For this inverse dynamics control problem, the determination of control inputs is based on the Moore-Penrose generalized inverse to complete the specified motion. Second-order constraints are used in the dynamics and servo control. Constraint violation suppression methods can be adopted to eliminate constraint drift in the numerical simulation. Furthermore, this proposed approach is applicable to not only fully actuated but also underactuated and redundantly actuated mechanical systems. Two-mass spring system and coordinated robot system are presented as examples for illustration.

[1]  V. I. Kirgetov The motion of controlled mechanical systems with prescribed constraints (servoconstraints) , 1967 .

[2]  Yannick Morel,et al.  Applied Nonlinear Control of Unmanned Vehicles with Uncertain Dynamics , 2009 .

[3]  Firdaus E. Udwadia,et al.  Explicit Equations of Motion for Mechanical Systems With Nonideal Constraints , 2001 .

[4]  A. Bjerhammar,et al.  Rectangular reciprocal matrices, with special reference to geodetic calculations , 1951 .

[5]  Paul Adrien Maurice Dirac,et al.  Lectures on Quantum Mechanics , 2001 .

[6]  Ye-Hwa Chen,et al.  Second-order constraints for equations of motion of constrained systems , 1998 .

[7]  A. G. Greenhill Analytical Mechanics , 1890, Nature.

[8]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[9]  C. F. Gauss,et al.  Über ein neues allgemeines Grundgesetz der Mechanik. , 2022 .

[10]  G. Hamel,et al.  Die Lagrange-Euler'schen gleichungen der Mechanik , 1903 .

[11]  I. Neĭmark,et al.  Dynamics of Nonholonomic Systems , 1972 .

[12]  R. Kalaba,et al.  A new perspective on constrained motion , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[13]  R. Penrose A Generalized inverse for matrices , 1955 .

[14]  Firdaus E. Udwadia,et al.  On constrained motion , 1992 .

[15]  C. F. Gauss,et al.  Über Ein Neues Allgemeines Grundgesetz der Mechanik , 1829 .

[16]  Y. H. Chen,et al.  Robust control for rigid serial manipulators: a general setting , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[17]  Mark B. Hoornbeek In motion , 1992 .

[18]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[19]  Leopold Alexander Pars,et al.  A Treatise on Analytical Dynamics , 1981 .

[20]  J. Gibbs On the Fundamental Formulae of Dynamics , 1879 .

[21]  C. T. Leondes Analytical dynamics of discrete systems : Reinhardt M. Rosenberg. 421 pages, diagrams, illustrations 6x 9 in., Plenum Press, New York, 1977. Price, $25.00. , 1979 .

[22]  Ye-Hwa Chen,et al.  Equations of motion of constrained mechanical systems: given force depends on constraint force , 1999 .

[23]  Ye-Hwa Chen,et al.  Constraint-following Servo Control Design for Mechanical Systems , 2009 .

[24]  P. Appell Sur une forme générale des équations de la dynamique. , 1900 .

[25]  R. Kalaba,et al.  Analytical Dynamics: A New Approach , 1996 .

[26]  Firdaus E. Udwadia,et al.  On constrained motion , 1992, Appl. Math. Comput..

[27]  P. Ehrenfest,et al.  Die Lagrange-Eulersche Gleichungen der Mechanik , 1905 .