Boundary value problems for the Laplacian in the Euclidean space solved by symbolic computation

By means of the symbolic manipulation language REDUCE, a complete set of harmonic polynomials in Euclidean space is constructed. The method relies on the theory of monogenic functions defined in ℝn+1 and taking values in a Clifford algebra An. An approximate solution for the Dirichlet and Neumann problems in the form of a harmonic polynomial may be obtained. The method is applied to solying a Dirichlet problem in a cube.