Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems
暂无分享,去创建一个
[1] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[2] Gene H. Golub,et al. Matrix computations , 1983 .
[3] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[4] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[5] Y. Saad,et al. Experimental study of ILU preconditioners for indefinite matrices , 1997 .
[6] Chen Greif,et al. Iterative Solution of Cyclically Reduced Systems Arising from Discretization of the Three-Dimensional Convection-Diffusion Equation , 1998, SIAM J. Sci. Comput..
[7] Chen Greif,et al. Block Stationary Methods for Nonsymmetric Cyclically Reduced Systems Arising from Three-Dimensional Elliptic Equations , 1999, SIAM J. Matrix Anal. Appl..
[8] Y. Saad,et al. Iterative solution of linear systems in the 20th century , 2000 .
[9] D. Vanderstraeten. On the Preconditioning of Matrices with a Dominant Skew-symmetric Component , 2000 .
[10] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[11] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[12] Gene H. Golub,et al. A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..
[13] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[14] Gene H. Golub,et al. On the preconditioning of matrices with skew-symmetric splittings , 2004, Numerical Algorithms.
[15] Gene H. Golub,et al. Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..
[16] Gene H. Golub,et al. On successive‐overrelaxation acceleration of the Hermitian and skew‐Hermitian splitting iterations , 2007, Numer. Linear Algebra Appl..