Methane hydrates: Nucleation in microporous materials

[1]  J. Silvestre-Albero,et al.  Methane Hydrate in Confined Spaces: An Alternative Storage System. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  P. Gillet,et al.  Fast methane diffusion at the interface of two clathrate structures , 2017, Nature Communications.

[3]  Niall J. English,et al.  Mechanisms and Nucleation Rate of Methane Hydrate by Dynamical Nonequilibrium Molecular Dynamics , 2017 .

[4]  S. Kjelstrup,et al.  Modeling thermodynamic properties of propane or tetrahydrofuran mixed with carbon dioxide or methane in structure-II clathrate hydrates , 2017 .

[5]  M. N. Khan,et al.  Overview: Nucleation of clathrate hydrates. , 2016, The Journal of chemical physics.

[6]  John A. Ripmeester,et al.  Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect , 2016 .

[7]  A. Sum,et al.  Cage occupancy of methane hydrates from Gibbs ensemble Monte Carlo simulations , 2016 .

[8]  Hideki Tanaka,et al.  Mechanism of Slow Crystal Growth of Tetrahydrofuran Clathrate Hydrate , 2016 .

[9]  A. Mohammadi,et al.  Clathrate hydrate formation in (methane, carbon dioxide or nitrogen + tetrahydropyran or furan + water) system: Thermodynamic and kinetic study , 2016 .

[10]  Stability and cell distortion of sI clathrate hydrates of methane and carbon dioxide: A 2D lattice-gas model study , 2015 .

[11]  A. Urakawa,et al.  Methane hydrate formation in confined nanospace can surpass nature , 2015, Nature Communications.

[12]  J. Schicks,et al.  Kinetic and Thermodynamic Aspects of Clathrate Hydrate Nucleation and Growth , 2015 .

[13]  Niall J. English,et al.  Perspectives on Molecular Simulation of Clathrate Hydrates: Progress, Prospects and Challenges , 2015 .

[14]  W. Chun,et al.  An experimental investigation into the effects of zeolites on the formation of methane hydrates , 2015 .

[15]  M. Pera‐Titus,et al.  Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO2 adsorption. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Niall J. English,et al.  Methane Clathrate Hydrate Nucleation Mechanism by Advanced Molecular Simulations , 2014 .

[17]  Avelino Corma,et al.  Zeolite Rho: a highly selective adsorbent for CO2/CH4 separation induced by a structural phase modification. , 2012, Chemical communications.

[18]  E. D. Sloan,et al.  The cages, dynamics, and structuring of incipient methane clathrate hydrates. , 2011, Physical chemistry chemical physics : PCCP.

[19]  Liam C Jacobson,et al.  Amorphous precursors in the nucleation of clathrate hydrates. , 2010, Journal of the American Chemical Society.

[20]  P. Wilson,et al.  Hydrate formation and re-formation in nucleating THF/water mixtures show no evidence to support a “memory” effect , 2010 .

[21]  Luca Lutterotti,et al.  Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction , 2010 .

[22]  S. Fan,et al.  Influence of A-type Zeolite on Methane Hydrate Formation , 2009 .

[23]  E. D. Sloan,et al.  Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage , 2009 .

[24]  D. Quigley,et al.  Gas hydrate nucleation and cage formation at a water/methane interface. , 2008, Physical chemistry chemical physics : PCCP.

[25]  L. McCusker,et al.  RHO – Im3¯m , 2007 .

[26]  RHO – Rho, Hydrated , 2007 .

[27]  H. Noguchi,et al.  Clathrate-formation mediated adsorption of methane on Cu-complex crystals. , 2005, The journal of physical chemistry. B.

[28]  Huang Zeng,et al.  Tuning clathrate hydrates for hydrogen storage , 2005, Nature.

[29]  W. E. Billups,et al.  Gas hydrate single-crystal structure analyses. , 2004, Journal of the American Chemical Society.

[30]  A. Celzard,et al.  Improved methane storage capacities by sorption on wet active carbons , 2004 .

[31]  M. Stackelberg,et al.  Zur Struktur der Gashydrate , 2004, Naturwissenschaften.

[32]  J. Miyawaki,et al.  Macroscopic evidence of enhanced formation of methane nanohydrates in hydrophobic nanospaces , 1998 .

[33]  R. Harlow,et al.  Flexibility of the zeolite RHO framework : effect of dehydration on the crystal structure of the beryllophosphate mineral, pahasapaite , 1991 .

[34]  G. Stucky,et al.  Flexibility of the zeolite RHO framework. In situ X-ray and neutron powder structural characterization of divalent cation-exchanged zeolite RHO , 1990 .

[35]  G. MacDonald Role of methane clathrates in past and future climates , 1990 .

[36]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[37]  J. B. Higgins,et al.  Collection of Simulated XRD Powder Patterns for Zeolites Fifth (5th) Revised Edition , 1984 .

[38]  M. V. Stackelberg,et al.  On the Structure of Gas Hydrates , 1951 .

[39]  W. F. Claussen,et al.  Suggested Structures of Water in Inert Gas Hydrates , 1951 .

[40]  63. The structure of molecular compounds. Part VII. Compounds formed by the inert gases , 1950 .

[41]  J. D. Bernal,et al.  A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions , 1933 .