A Survey of Continuous Karnik-Mendel Algorithms and Their Generalizations

Karnik–Mendel (KM) algorithms are important tools for type-2 fuzzy logic. This survey chapter summarizes some extensions of continuous Karnik–Mendel algorithms. It is shown that the solution of KM algorithms can be transformed into the solution of root-finding problems, and that the iteration formula in KM algorithms is equivalent to the Newton-Raphson root-finding method in numerical analysis. New iteration formulas are summarized that accelerate the convergence speed and it is shown that numerical integration methods can be used to improve computation accuracy. This chapter demonstrates that properties and structures of KM algorithms can be understood and improved with the techniques from numerical analysis.

[1]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[2]  Jerry M. Mendel,et al.  Perceptual Computing: Aiding People in Making Subjective Judgments , 2010 .

[3]  Jerry M. Mendel,et al.  Aggregation Using the Linguistic Weighted Average and Interval Type-2 Fuzzy Sets , 2007, IEEE Transactions on Fuzzy Systems.

[4]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[5]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing , 2008, IEEE Transactions on Fuzzy Systems.

[6]  Hong Zhang,et al.  A new algorithm for computing the fuzzy weighted average , 2010, IEICE Electron. Express.

[7]  Jerry M. Mendel,et al.  Uncertainty measures for interval type-2 fuzzy sets , 2007, Inf. Sci..

[8]  Jerry M. Mendel,et al.  Perceptual Reasoning for Perceptual Computing: A Similarity-Based Approach , 2009, IEEE Transactions on Fuzzy Systems.

[9]  Jerry M. Mendel,et al.  Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2007, IEEE Transactions on Fuzzy Systems.

[10]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[11]  Jerry M. Mendel,et al.  Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm , 2011, IEEE Transactions on Fuzzy Systems.

[12]  Jerry M. Mendel,et al.  On answering the question "Where do I start in order to solve a new problem involving interval type-2 fuzzy sets?" , 2009, Inf. Sci..

[13]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[14]  Jerry M. Mendel,et al.  Enhanced Karnik--Mendel Algorithms , 2009, IEEE Transactions on Fuzzy Systems.

[15]  John T. Rickard,et al.  Type-2 Fuzzy Sets as Functions on Spaces , 2010, IEEE Transactions on Fuzzy Systems.

[16]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[17]  Abhishek K Gupta,et al.  Numerical Methods using MATLAB , 2014, Apress.

[18]  R. John,et al.  Type-2 Fuzzy Logic: A Historical View , 2007, IEEE Computational Intelligence Magazine.

[19]  Jerry M. Mendel,et al.  Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements , 2012, Inf. Sci..

[20]  J. Mendel,et al.  α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009 .

[21]  Jerry M. Mendel,et al.  Aggregation Using the Fuzzy Weighted Average as Computed by the Karnik–Mendel Algorithms , 2008, IEEE Transactions on Fuzzy Systems.

[22]  Jerry M. Mendel,et al.  $\alpha$-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications , 2009, IEEE Transactions on Fuzzy Systems.

[23]  Jerry M. Mendel,et al.  Type-2 Fuzzistics for Symmetric Interval Type-2 Fuzzy Sets: Part 1, Forward Problems , 2006, IEEE Transactions on Fuzzy Systems.

[24]  Jerry M. Mendel,et al.  Computing With Words for Hierarchical Decision Making Applied to Evaluating a Weapon System , 2010, IEEE Transactions on Fuzzy Systems.

[25]  Jerry M. Mendel,et al.  Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2011, IEEE Transactions on Fuzzy Systems.

[26]  Shie-Jue Lee,et al.  An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[27]  Hani Hagras,et al.  A Type-2 Fuzzy Ontology and Its Application to Personal Diabetic-Diet Recommendation , 2010, IEEE Transactions on Fuzzy Systems.

[28]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[29]  Jerry M. Mendel,et al.  New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule , 2007, Inf. Sci..

[30]  George Lindfield,et al.  Numerical Methods Using MATLAB , 1998 .

[31]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[32]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[33]  Feilong Liu,et al.  An efficient centroid type-reduction strategy for general type-2 fuzzy logic system , 2008, Inf. Sci..

[34]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[35]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).