The MFrontGenericInterfaceSupport project

1 CEA, DES, IRESNE, DEC, Cadarache F-13108 Saint-Paul-Lez-Durance, France 2 Laboratoire Navier UMR 8205 (École des Ponts ParisTech-IFSTTAR-CNRS) 3 R&D and Engineering, Wärtsilä, P.O. Box 244, 65101 Vaasa, Finland 4 University of Oulu, Erkki Koiso-Kanttilan katu 1, 90014 Oulu, Finland 5 VTT Technical Research Centre of Finland, Kivimiehentie 3, 02150 Espoo, Finland 6 Department of Computer Science, Aalto University, Konemiehentie 2, 02150 Espoo, Finland 7 Geotechnical Institute, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Str. 1, 09599 Freiberg, Germany 8 Department of Environmental Informatics, Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318 Leipzig, Germany DOI: 10.21105/joss.02003

[1]  Klaus-Peter Kröhn Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der finiten Elemente , 1991 .

[2]  Olaf Kolditz,et al.  Object‐oriented finite element analysis of thermo‐hydro‐mechanical (THM) problems in porous media , 2007 .

[3]  Olaf Kolditz,et al.  Experimental characterization and numerical modelling of fracture processes in granite , 2019, International Journal of Solids and Structures.

[4]  Rainer Helmig Theorie und Numerik der Mehrphasenströmungen in geklüftet-porösen Medien , 1993 .

[5]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[6]  HelferThomas,et al.  Introducing the open-source mfront code generator , 2015 .

[7]  Tero Frondelius,et al.  Natural Frequency Calculations with JuliaFEM , 2017 .

[8]  Ivan Yashchuk,et al.  MFrontInterface.jl: MFront material models in JuliaFEM , 2019 .

[9]  Bruno Michel,et al.  Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform , 2015, Comput. Math. Appl..

[10]  Tero Frondelius,et al.  JuliaFEM beam element implementation , 2019, Rakenteiden Mekaniikka.

[11]  Tero Frondelius,et al.  Pipe route optimization to avoid undesired vibration by using JuliaFEM , 2019 .

[12]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[13]  Tero Frondelius,et al.  Implementing model reduction to the JuliaFEM platform , 2018, Rakenteiden Mekaniikka.

[14]  Olaf Kolditz,et al.  Comparative verification of discrete and smeared numerical approaches for the simulation of hydraulic fracturing , 2019, GEM - International Journal on Geomathematics.

[15]  Tero Frondelius,et al.  JuliaFEM - open source solver for both industrial and academia usage , 2017 .

[16]  Tero Frondelius,et al.  Introduction to JuliaFEM, an open source FEM solver , 2019 .

[17]  Olaf Kolditz,et al.  Implicit numerical integration and consistent linearization of inelastic constitutive models of rock salt , 2017 .

[18]  Rainer Helmig,et al.  Development of Open-Source Porous Media Simulators: Principles and Experiences , 2019, Transport in Porous Media.

[19]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[20]  Olaf Kolditz,et al.  Lower‐dimensional interface elements with local enrichment: application to coupled hydro‐mechanical problems in discretely fractured porous media , 2012 .

[21]  Wenqing Wang,et al.  OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media , 2012, Environmental Earth Sciences.

[22]  O. C. Zienkiewicz,et al.  Some useful forms of isotropic yield surfaces for soil and rock mechanics , 1977 .

[23]  Sebastian Bauer,et al.  A process-oriented approach to computing multi-field problems in porous media , 2004 .

[24]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..