The use of classification and regression algorithms using the random forests method with presence-only data to model species’ distribution

Graphical abstract

[1]  Simon Ferrier,et al.  Evaluating the predictive performance of habitat models developed using logistic regression , 2000 .

[2]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[3]  D. Norris,et al.  Model Thresholds are More Important than Presence Location Type: Understanding the Distribution of Lowland tapir (Tapirus Terrestris) in a Continuous Atlantic Forest of Southeast Brazil , 2014 .

[4]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[5]  Á. Felicísimo,et al.  Profile or group discriminative techniques? Generating reliable species distribution models using pseudo‐absences and target‐group absences from natural history collections , 2010 .

[6]  Antoine Guisan,et al.  Predictive habitat distribution models in ecology , 2000 .

[7]  G. Tutz,et al.  An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. , 2009, Psychological methods.

[8]  Rosa M. Chefaoui,et al.  Assessing the effects of pseudo-absences on predictive distribution model performance , 2008 .

[9]  T. Dawson,et al.  Selecting thresholds of occurrence in the prediction of species distributions , 2005 .

[10]  M. Araújo,et al.  Choice of threshold alters projections of species range shifts under climate change , 2011 .

[11]  J. Peters,et al.  Random forests as a tool for ecohydrological distribution modelling , 2007 .

[12]  J. Evans,et al.  Modeling Species Distribution and Change Using Random Forest , 2011 .

[13]  L. Shi-rong,et al.  An evaluation of four threshold selection methods in species occurrence modelling with random forest: Case studies with Davidia involucrata and Cunninghamia lanceolata , 2017 .

[14]  Mathieu Marmion,et al.  Evaluation of consensus methods in predictive species distribution modelling , 2009 .

[15]  John Bell,et al.  A review of methods for the assessment of prediction errors in conservation presence/absence models , 1997, Environmental Conservation.

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  Xudong Zhang,et al.  Classification and regression with random forests as a standard method for presence-only data SDMs: A future conservation example using China tree species , 2019, Ecol. Informatics.

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  A. Guisan,et al.  An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data , 2004 .

[20]  A. Townsend Peterson,et al.  Novel methods improve prediction of species' distributions from occurrence data , 2006 .

[21]  R. Hijmans,et al.  Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. , 2012, Ecology.

[22]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[23]  Carsten F. Dormann,et al.  Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure , 2017 .

[24]  Kerry A. Naish,et al.  A practical introduction to Random Forest for genetic association studies in ecology and evolution , 2018, Molecular ecology resources.

[25]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[26]  M. White,et al.  Measuring and comparing the accuracy of species distribution models with presence–absence data , 2011 .

[27]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[28]  C.J.F. ter Braak,et al.  A Theory of Gradient Analysis , 2004 .

[29]  A. Lehmann,et al.  Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns , 2002 .

[30]  Gretchen G. Moisen,et al.  A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and Kappa , 2008 .

[31]  张雷 Zhang Lei,et al.  The basic principle of random forest and its applications in ecology: a case study of Pinus yunnanensis , 2014 .

[32]  M. White,et al.  Selecting thresholds for the prediction of species occurrence with presence‐only data , 2013 .

[33]  F. Jiguet,et al.  Selecting pseudo‐absences for species distribution models: how, where and how many? , 2012 .