Refined OPLS all-atom force field for saturated phosphatidylcholine bilayers at full hydration.

We report parametrization of dipalmitoyl-phosphatidylcholine (DPPC) in the framework of the Optimized Parameters for Liquid Simulations all-atom (OPLS-AA) force field. We chose DPPC as it is one of the most studied phospholipid species and thus has plenty of experimental data necessary for model validation, and it is also one of the highly important and abundant lipid types, e.g., in lung surfactant. Overall, PCs have not been previously parametrized in the OPLS-AA force field; thus, there is a need to derive its bonding and nonbonding parameters for both the polar and nonpolar parts of the molecule. In the present study, we determined the parameters for torsion angles in the phosphatidylcholine and glycerol moieties and in the acyl chains, as well the partial atomic charges. In these calculations, we used three methods: (1) Hartree-Fock (HF), (2) second order Møller-Plesset perturbation theory (MP2), and (3) density functional theory (DFT). We also tested the effect of the polar environment by using the polarizable continuum model (PCM), and for acyl chains the van der Waals parameters were also adjusted. In effect, six parameter sets were generated and tested on a DPPC bilayer. Out of these six sets, only one was found to be able to satisfactorily reproduce experimental data for the lipid bilayer. The successful DPPC model was obtained from MP2 calculations in an implicit polar environment (PCM).

[1]  Alan E Mark,et al.  On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. , 2010, Journal of chemical theory and computation.

[2]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[3]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[4]  Balázs Jójárt,et al.  Performance of the general amber force field in modeling aqueous POPC membrane bilayers , 2007, J. Comput. Chem..

[5]  Knut Teigen,et al.  LIPID11: a modular framework for lipid simulations using amber. , 2012, The journal of physical chemistry. B.

[6]  Jeffery B. Klauda,et al.  Update of the cholesterol force field parameters in CHARMM. , 2012, The journal of physical chemistry. B.

[7]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[8]  James H. Davis,et al.  The description of membrane lipid conformation, order and dynamics by 2H-NMR. , 1983, Biochimica et biophysica acta.

[9]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[10]  I. Vattulainen,et al.  Interaction of hematoporphyrin with lipid membranes. , 2012, The journal of physical chemistry. B.

[11]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[12]  J. Seelig,et al.  Bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Conformational differences between the fatty acyl chains. , 1975, Biochimica et biophysica acta.

[13]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[14]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[15]  W. L. Jorgensen,et al.  Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water , 2000 .

[16]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[17]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[18]  Jeffery B. Klauda,et al.  Improving the CHARMM force field for polyunsaturated fatty acid chains. , 2012, The journal of physical chemistry. B.

[19]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[20]  T. Ala‐Nissila,et al.  A MARTINI Coarse-Grained Model of a Thermoset Polyester Coating , 2011 .

[21]  S. Dodd,et al.  Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. , 2000, Biophysical journal.

[22]  Mark S. P. Sansom,et al.  Reduced Lateral Mobility of Lipids and Proteins in Crowded Membranes , 2013, PLoS Comput. Biol..

[23]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[24]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[25]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[26]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[27]  M L Lamb,et al.  Investigations of neurotrophic inhibitors of FK506 binding protein via Monte Carlo simulations. , 1998, Journal of medicinal chemistry.

[28]  Ilpo Vattulainen,et al.  Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case , 2011 .

[29]  A. Bunker,et al.  Strong preferences of dopamine and l‐dopa towards lipid head group: importance of lipid composition and implication for neurotransmitter metabolism , 2012, Journal of neurochemistry.

[30]  Andreas Kukol,et al.  Lipid Models for United-Atom Molecular Dynamics Simulations of Proteins. , 2009, Journal of chemical theory and computation.

[31]  Alexander P Lyubartsev,et al.  Another Piece of the Membrane Puzzle: Extending Slipids Further. , 2013, Journal of chemical theory and computation.

[32]  Nava Whiteford,et al.  Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble. , 2009, Biochimica et biophysica acta.

[33]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[34]  Artturi Koivuniemi,et al.  Revealing structural and dynamical properties of high density lipoproteins through molecular simulations , 2012 .

[35]  Roland Faller,et al.  Coarse-grained modeling of lipids. , 2009, Chemistry and physics of lipids.

[36]  Brad A. Bauer,et al.  Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations , 2012, Theoretical Chemistry Accounts.

[37]  H. Akutsu Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers. , 1981, Biochemistry.

[38]  H. Monkhorst,et al.  Linear dependence in basis‐set calculations for extended systems , 1992 .

[39]  J. Nagle,et al.  Comparing simulations of lipid bilayers to scattering data: the GROMOS 43A1-S3 force field. , 2013, The journal of physical chemistry. B.

[40]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[41]  Piotr Cieplak,et al.  The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building. , 2010, Physical chemistry chemical physics : PCCP.

[42]  William L. Jorgensen,et al.  Monte Carlo Backbone Sampling for Nucleic Acids Using Concerted Rotations Including Variable Bond Angles , 2004 .

[43]  B. Winter,et al.  Transforming anion instability into stability: contrasting photoionization of three protonation forms of the phosphate ion upon moving into water. , 2012, The journal of physical chemistry. B.

[44]  Tiago M. Ferreira,et al.  Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H-13C NMR and MD simulation studies. , 2013, Physical chemistry chemical physics : PCCP.

[45]  F. Bushman,et al.  Developing a dynamic pharmacophore model for HIV-1 integrase. , 2000, Journal of medicinal chemistry.

[46]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[47]  William L. Jorgensen,et al.  OPLS all‐atom force field for carbohydrates , 1997 .

[48]  R. Suter,et al.  X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. , 1996, Biophysical journal.

[49]  J. Devoisselle,et al.  Density functional theory-based conformational analysis of a phospholipid molecule (dimyristoyl phosphatidylcholine). , 2008, The journal of physical chemistry. B.

[50]  Alexander M. Smondyrev,et al.  United atom force field for phospholipid membranes: Constant pressure molecular dynamics simulation of dipalmitoylphosphatidicholine/water system , 1999 .

[51]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[52]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[53]  G. Kamath,et al.  Biomolecular simulations with the transferable potentials for phase equilibria: extension to phospholipids. , 2013, The journal of physical chemistry. B.

[54]  P. Kollman,et al.  New-generation amber united-atom force field. , 2006, The journal of physical chemistry. B.

[55]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[56]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[57]  Alexander P Lyubartsev,et al.  Implicit inclusion of atomic polarization in modeling of partitioning between water and lipid bilayers. , 2013, Physical chemistry chemical physics : PCCP.

[58]  R. Metzler,et al.  Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. , 2013, Faraday discussions.

[59]  Ilpo Vattulainen,et al.  Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations , 2012, PLoS Comput. Biol..

[60]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[61]  Cristiano Ruch Werneck Guimarães,et al.  Elucidation of fatty acid amide hydrolase inhibition by potent alpha-ketoheterocycle derivatives from Monte Carlo simulations. , 2005, Journal of the American Chemical Society.

[62]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[63]  Eric Jakobsson,et al.  An improved united atom force field for simulation of mixed lipid bilayers. , 2009, The journal of physical chemistry. B.

[64]  Paul A. Wiggins,et al.  Emerging roles for lipids in shaping membrane-protein function , 2009, Nature.

[65]  R. Böckmann,et al.  Optimization of the OPLS-AA Force Field for Long Hydrocarbons. , 2012, Journal of chemical theory and computation.

[66]  Brad A. Bauer,et al.  Water Permeation Through DMPC Lipid Bilayers using Polarizable Charge Equilibration Force Fields. , 2011, Chemical physics letters.

[67]  R. Griffin,et al.  Dipolar Recoupling in MAS NMR: A Probe for Segmental Order in Lipid Bilayers , 1997 .

[68]  Benjamin D. Madej,et al.  Lipid14: The Amber Lipid Force Field , 2014, Journal of chemical theory and computation.

[69]  A. Kusumi,et al.  Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. , 2000, Biophysical journal.

[70]  Sergei Izvekov,et al.  Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. , 2006, Journal of chemical theory and computation.

[71]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[72]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[73]  I. Vattulainen,et al.  How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? , 2014, Journal of Molecular Modeling.

[74]  J. Šponer,et al.  Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory. , 2013, Physical chemistry chemical physics : PCCP.

[75]  A. Bunker,et al.  Molecular dynamics simulation of PEGylated bilayer interacting with salt ions: a model of the liposome surface in the bloodstream. , 2012, The journal of physical chemistry. B.

[76]  Krzysztof Murzyn,et al.  Refined OPLS all-atom force field parameters for n-pentadecane, methyl acetate, and dimethyl phosphate. , 2013, The journal of physical chemistry. B.

[77]  E. Dufourc,et al.  Restatement of order parameters in biomembranes: calculation of C-C bond order parameters from C-D quadrupolar splittings. , 1995, Biophysical journal.

[78]  Benoît Roux,et al.  A polarizable force field of dipalmitoylphosphatidylcholine based on the classical Drude model for molecular dynamics simulations of lipids. , 2013, The journal of physical chemistry. B.

[79]  Robert Vácha,et al.  Biomolecular simulations of membranes: physical properties from different force fields. , 2008, The Journal of chemical physics.

[80]  Alexander P Lyubartsev,et al.  An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. , 2012, Journal of chemical theory and computation.

[81]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[82]  Siewert J Marrink,et al.  Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. , 2005, Chemistry and physics of lipids.

[83]  J. Seelig,et al.  Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. , 1977, Biochimica et biophysica acta.

[84]  Alexander D. MacKerell,et al.  Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. , 2006, Biophysical journal.

[85]  I. Vattulainen,et al.  Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids , 2011 .

[86]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[87]  J. Nagle,et al.  Closer look at structure of fully hydrated fluid phase DPPC bilayers. , 2006, Biophysical journal.

[88]  A. Bunker,et al.  Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties. , 2007, Journal of Physical Chemistry B.

[89]  T. Róg,et al.  Cholesterol effects on the phosphatidylcholine bilayer nonpolar region: a molecular simulation study. , 2001, Biophysical journal.

[90]  M. Karttunen,et al.  Low Density Lipoprotein , 2020, Definitions.