Grünbaum colorings of toroidal triangulations

We prove that if G is a triangulation of the torus and χ(G) 6= 5, then there is a 3-coloring of the edges of G so that the edges bounding every face are assigned three different colors.

[1]  Robin J. Wilson EVERY PLANAR MAP IS FOUR COLORABLE , 1991 .

[2]  Michael O. Albertson,et al.  On Six‐Chromatic Toroidal Graphs , 1980 .

[3]  William L. Kocay,et al.  Embeddings of Small Graphs on the Torus , 2001 .

[4]  Robin Thomas,et al.  The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.

[5]  Michael O. Albertson,et al.  The maximum size of an independent set in a nonplanar graph , 1975 .

[6]  Carsten Thomassen Five-Coloring Graphs on the Torus , 1994, J. Comb. Theory, Ser. B.

[7]  Michael O. Albertson,et al.  The independence ratio and genus of a graph , 1977 .

[8]  Amos Altshuler,et al.  Construction and enumeration of regular maps on the torus , 1973, Discret. Math..

[9]  G. Dirac Map-Colour Theorems , 1952, Canadian Journal of Mathematics.

[10]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.