Strategy for developing microbeads applicable to islet xenotransplantation into a spontaneous diabetic NOD mouse.

A bioartificial pancreas (BAP) created through the encapsulation of islets of Langerhans (islets) in a semipermeable membrane has been proposed as a promising approach to treating insulin-dependent diabetes patients. A nonobese diabetic (NOD) mouse, which shares many features of human insulin-dependent diabetes mellitus, is an ideal model for evaluating the function of BAP. However, the functions of BAPs that have been developed have been limited in NOD mice. We propose novel microbeads that can realize long-term BAP function in NOD mice. The novel microbeads were composed of agarose and poly(styrene sulfonic acid) (PSSa) mixed gel. A polyion complex layer between PSSa and polycationic polybrene was formed on and just inside the microbead, and the microbead surfaces were further covered by polyanions to produce anionic surface charges. The islets in the novel microbeads were intraperitoneally implanted. Graft-functioning periods were dependent on both PSSa concentration and the kinds of polyanion. Islets in the microbeads composed of 5% agarose and 5% PSSa, which had an outermost surface covered by carboxymethyl cellulose, produced normoglycemic periods of more than 60 days in all five recipients. Control mice receiving either transplants of unenclosed islets or islets in agarose microbeads showed normoglycemic periods of less than 12 days. We believe that agarose/PSSa microbeads are promising for producing semipermeable membranes that enable xenotransplantation of islets in spontaneous diabetes mellitus.

[1]  A. Rabinovitch,et al.  Destruction of Rat Islet Cell Monolayers by Cytokines: Synergistic Interactions of Interferon-γ, Tumor Necrosis Factor, Lymphotoxin, and Interleukin 1 , 1988, Diabetes.

[2]  C. Stiller,et al.  HISTOLOGICAL AND IMMUNOPATHOLOGICAL ANALYSIS OF RECOVERED ENCAPSULATED ALLOGENEIC ISLETS FROM TRANSPLANTED DIABETIC BB/W RATS , 1992, Transplantation.

[3]  A. Sun,et al.  Prolonged Reversal of Diabetic State in NOD Mice by Xenografts of Microencapsulated Rat Islets , 1991, Diabetes.

[4]  V. D’Agati,et al.  The role of CD4+ helper T cells in the destruction of microencapsulated islet xenografts in nod mice. , 1990, Transplantation.

[5]  A. Sun,et al.  Reversal of Diabetes in BB Rats by Transplantation of Encapsulated Pancreatic Islets , 1990, Diabetes.

[6]  P. Lacy,et al.  Method for the Isolation of Intact Islets of Langerhans from the Rat Pancreas , 1967, Diabetes.

[7]  H. Amemiya,et al.  Feasibility of agarose microbeads with xenogeneic islets as a bioartificial pancreas. , 1994, Journal of biomedical materials research.

[8]  R. Lanza,et al.  Perspectives in diabetes. Islet transplantation with immunoisolation. , 1992, Diabetes.

[9]  B. Solomon,et al.  Long-Term Plasma Glucose Normalization in Experimental Diabetic Rats With Macroencapsulated Implants of Benign Human Insulinomas , 1986, Diabetes.

[10]  A. Sun,et al.  Encapsulation of Rat Islets of Langerhans Prolongs Xenograft Survival in Diabetic Mice , 1986, Diabetes.

[11]  F T Gentile,et al.  Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. , 1991, Science.

[12]  J. Nerup,et al.  Cytotoxicity of human pI 7 interleukin-1 for pancreatic islets of Langerhans. , 1986, Science.

[13]  J. Ono,et al.  Simple method for the collection of pancreatic islets by the use of Ficoll-Conray gradient. , 1979, Endocrinologia japonica.

[14]  Robert Lanza,et al.  Islet Transplantation With Immunoisolation , 1992, Diabetes.

[15]  C. Colton,et al.  Bioengineering in development of the hybrid artificial pancreas. , 1991, Journal of biomechanical engineering.