Interface state band between GaAs and its anodic native oxide

Abstract The basic interface properties of GaAs metal-oxide-semiconductor (MOS) structures formed using an anodic oxidation process in a mixed solution of glycol and water (the AGW process) were investigated. Detailed measurements of the capacitance-voltage and conductance-voltage characteristics and the transient behaviour of the thermal and optical MOS capacitance revealed various anomalies which are not encountered in the silicon MOS system. On the basis of an analysis of such anomalies an interface state band (ISB) model is presented for the GaAs-anodic oxide MOS system, and the origin and properties of the ISB are discussed. The present ISB does not pin the surface Fermi potential but severely limits the range of its movement at steady state to the lower half of the energy gap.

[1]  H. Hasegawa,et al.  Anomalous frequency dispersion of m.o.s. capacitors formed on n-type GaAs by anodic oxidation , 1976 .

[2]  R. Sherwood,et al.  NEW PERMANENT MAGNET MATERIALS , 1968 .

[3]  P. V. Gray,et al.  Si ‐ SiO2 Fast Interface State Measurements , 1968 .

[4]  D. Lile,et al.  Depletion‐mode GaAs MOS FET , 1976 .

[5]  L. Messick,et al.  Electrical properties of anodic and pyrolytic dielectrics on gallium arsenide , 1977 .

[6]  J. Nakai,et al.  Surface Potential and Surface State Density in Anodized GaAs MOS Capacitors , 1976 .

[7]  D. J. Coleman,et al.  On the Mechanism of GaAs Anodization , 1977 .

[8]  S. Murarka,et al.  Anodic Oxide on GaAs : Quantitative Chemical Depth Profiles Obtained Using Auger Spectroscopy and Neutron Activation Analysis , 1977 .

[9]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[10]  H. Hasegawa,et al.  Anodic Oxidation of GaAs in Mixed Solutions of Glycol and Water , 1976 .

[11]  T. Sugano,et al.  Anodic Oxidation of GaAs Using Oxygen Plasma , 1978 .

[12]  Hideki Hasegawa,et al.  New anodic native oxide of GaAs with improved dielectric and interface properties , 1975 .

[13]  J. G. Simmons,et al.  Theory of dynamic charge current and capacitance characteristics in MIS systems containing distributed surface traps , 1973 .

[14]  C. N. Berglund Surface states at steam-grown silicon-silicon dioxide interfaces , 1966 .

[15]  Takashi U. Ito,et al.  The GaAs inversion-type MIS transistors , 1974 .

[16]  E. O. Johnson Large-Signal Surface Photovoltage Studies with Germanium , 1958 .

[17]  H. Hasegawa,et al.  On the Behaviors of the Cell Voltage during Anodic Oxidation of GaAs under Dark and Illuminated Conditions , 1976 .

[18]  P. Pianetta,et al.  Oxygen sorption and excitonic effects on GaAs surfaces , 1977 .

[19]  P. Pianetta,et al.  Surface and interface states on GaAs(110): Effects of atomic and electronic rearrangements , 1977 .

[20]  H. Hartnagel,et al.  First anodic-oxide GaAs m.o.s.f.e.t.s based on easy technological processes , 1976 .

[21]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[22]  Tohru S. Suzuki,et al.  Degradation of photoluminescence intensity caused by excitation‐enhanced oxidation of GaAs surfaces , 1977 .

[23]  R. Chang,et al.  Plasma oxidation of GaAs , 1976 .

[24]  H. Preier,et al.  CONTRIBUTIONS OF SURFACE STATES TO MOS IMPEDANCE , 1967 .

[25]  H. L. Hartnagel,et al.  On the interpretation of electrical measurements on the GaAs-MOS system , 1978 .

[26]  J. Simmons,et al.  Theory of dynamic charge and capacitance characteristics in MIS systems containing discrete surface traps , 1973 .

[27]  B. Jeppsson,et al.  Influence of Temperature on Anodically Grown Native Oxides on Gallium Arsenide , 1977 .

[28]  S. Ciraci,et al.  Surface state band on GaAs (110) face , 1974 .

[29]  Y. Adachi,et al.  Microwave capability of 1.5 μm-gate GaAs m.o.s.f.e.t. , 1977 .

[30]  W. Quast Small-signal admittance of the insulator-n type-gallium-arsenide interface region , 1972 .

[31]  H. Hasegawa,et al.  Anodic oxides on gallium phosphide for optoelectronic device and processing applications , 1978 .