Array Calibration Method in Super-resolution Direction Finding for Wideband Signals

Most super-resolution direction finding methods need to know the array manifold exactly, but there are usually various errors or perturbations in application, which directly lead to the performance degradation, and even failure. The paper proposed an array calibration method in super-resolution direction finding for wideband signals based on spatial domain sparse optimization when mutual coupling, gain/phase uncertainty, and sensor location errors exist simultaneously. First, the Fast Fourier Transformation (FFT) is employed to divide the wideband signals into several sub-bands; Then corresponding optimization functions are founded by the signals of every frequency; After that the error parameters are estimated by expectation maximization(EM) iteratively; Finally, the information of all frequencies is integrated to calibrate the array, consequently the actual directions of arrival (DOA) can be estimated.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[3]  R. A. Boyles On the Convergence of the EM Algorithm , 1983 .

[4]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[5]  Anthony J. Weiss,et al.  Direction Finding In The Presence Of Mutual Coupling , 1991, Twenty-Second Asilomar Conference on Signals, Systems and Computers.

[6]  Anthony J. Weiss,et al.  Array shape calibration using sources in unknown locations-a maximum likelihood approach , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  B. Friedlander,et al.  Eigenstructure methods for direction finding with sensor gain and phase uncertainties , 1990 .

[8]  Shahrokh Valaee,et al.  Wideband array processing using a two-sided correlation transformation , 1995, IEEE Trans. Signal Process..

[9]  Chong Meng Samson See Method for array calibration in high-resolution sensor array processing , 1995 .

[10]  B. C. Ng,et al.  Sensor-array calibration using a maximum-likelihood approach , 1996 .

[11]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[12]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[14]  M. H. Er,et al.  Theoretical analyses of gain and phase error calibration with optimal implementation for linear equispaced array , 2006, IEEE Transactions on Signal Processing.

[15]  Fabrizio Sellone,et al.  A Novel Online Mutual Coupling Compensation Algorithm for Uniform and Linear Arrays , 2007, IEEE Transactions on Signal Processing.

[16]  Zhongfu Ye,et al.  On the Resiliency of MUSIC Direction Finding Against Antenna Sensor Coupling , 2008, IEEE Transactions on Antennas and Propagation.

[17]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[18]  Orhan Arikan,et al.  A new technique for direction of arrival estimation for ionospheric multipath channels , 2009 .

[19]  Yiyu Zhou,et al.  DOA estimation with uniform linear arrays in the presence of mutual coupling via blind calibration , 2009, Signal Process..

[20]  Guisheng Liao,et al.  An Eigenstructure Method for Estimating DOA and Sensor Gain-Phase Errors , 2011, IEEE Transactions on Signal Processing.

[21]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[22]  Robert Kozma,et al.  Autonomous wireless radar sensor mote for target material classification , 2013, Digit. Signal Process..

[23]  Nan Hu,et al.  DOA estimation based on fourth-order cumulants in the presence of sensor gain-phase errors , 2013, Signal Process..

[24]  Giuseppe Fabrizio,et al.  A multipath-driven approach to HF geolocation , 2013, Signal Process..

[25]  Evgeny A. Mavrychev,et al.  Robust Capon-based direction-of-arrival estimators in partly calibrated sensor array , 2013, Signal Process..

[26]  Aniruddha S. Gokhale,et al.  Efficient and deterministic application deployment in component-based enterprise distributed real-time and embedded systems , 2013, Inf. Softw. Technol..

[27]  Yiyu Zhou,et al.  A Unified Framework and Sparse Bayesian Perspective for Direction-of-Arrival Estimation in the Presence of Array Imperfections , 2013, IEEE Transactions on Signal Processing.

[28]  Jinzhou Li,et al.  On the use of calibration sensors in source localization using TDOA and FDOA measurements , 2014, Digit. Signal Process..

[29]  Yang Song,et al.  “Quasi-Blind” Calibration of an Array of Acoustic Vector-Sensors That Are Subject to Gain Errors/Mis-Location/Mis-Orientation , 2014, IEEE Transactions on Signal Processing.

[30]  Donghai Li,et al.  Accurate single-observer passive coherent location estimation based on TDOA and DOA , 2014 .

[31]  Evangelos Theodoridis,et al.  SmartSantander: IoT experimentation over a smart city testbed , 2014, Comput. Networks.

[32]  Nagy I. Elkalashy,et al.  Partial discharge diagnostic system for smart distribution networks using directionally calibrated induction sensors , 2015 .