Metal-organic framework nanosheets in polymer composite materials for gas separation

[1]  R. Tannenbaum,et al.  Structure Solution from Powder Diffraction of Copper 1,4‐Benzenedicarboxylate , 2014 .

[2]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[3]  S. Kitagawa,et al.  Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. , 2013, Journal of the American Chemical Society.

[4]  S. Kaliaguine,et al.  Predictive models for mixed-matrix membrane performance: a review. , 2013, Chemical reviews.

[5]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[6]  Tao Li,et al.  Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .

[7]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[8]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[9]  A. Mohamed,et al.  Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review , 2012 .

[10]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[11]  Ying Dai,et al.  High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations , 2012 .

[12]  L. Francis,et al.  Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane , 2011, Science.

[13]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[14]  Qiang Xu,et al.  Top-down fabrication of crystalline metal-organic framework nanosheets. , 2011, Chemical communications.

[15]  M. Roeffaers,et al.  Interfacial synthesis of hollow metal–organic framework capsules demonstrating selective permeability , 2011, Nature Chemistry.

[16]  Christopher W. Jones,et al.  A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. , 2010, Angewandte Chemie.

[17]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[18]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[19]  Krista S. Walton,et al.  Molecular Simulations and Experimental Studies of CO2, CO, and N2 Adsorption in Metal−Organic Frameworks , 2010 .

[20]  J. Caro,et al.  Controllable Synthesis of Metal–Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes , 2010, Advanced materials.

[21]  D. Zhao,et al.  A Microporous Metal-Organic Framework with Immobilized -OH Functional Groups within the Pore Surfaces for Selective Gas Sorption , 2010 .

[22]  Hiroaki Yamanaka,et al.  Surface nano-architecture of a metal-organic framework. , 2010, Nature materials.

[23]  Jason K. Ward,et al.  Metal organic framework mixed matrix membranes for gas separations , 2010 .

[24]  J. Bai,et al.  Hierarchically Micro- and Mesoporous Coordination Polymer Nanostructures with High Adsorption Performance , 2010 .

[25]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[26]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[27]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[28]  O. Terasaki,et al.  Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts , 2009, Nature.

[29]  R. Tannenbaum,et al.  Synthesis and Structure Characterization of Copper Terephthalate Metal–Organic Frameworks , 2009 .

[30]  F. Kapteijn,et al.  Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina , 2008 .

[31]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[32]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[33]  W. Oh,et al.  Layered silicates by swelling of AMH-3 and nanocomposite membranes. , 2008, Angewandte Chemie.

[34]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[35]  Paul Munroe,et al.  Three-Dimensional Microstructural Characterization Using Focused Ion Beam Tomography , 2007 .

[36]  Dermot O'Hare,et al.  One-step synthesis and AFM imaging of hydrophobic LDH monolayers. , 2006, Chemical communications.

[37]  Baohui Li,et al.  Unusual Rheological Behavior of Liquid Polybutadiene Rubber/Clay Nanocomposite Gels: The Role of Polymer−Clay Interaction, Clay Exfoliation, and Clay Orientation and Disorientation , 2006 .

[38]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[39]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[40]  U. Mueller,et al.  Metal–organic frameworks—prospective industrial applications , 2006 .

[41]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[42]  T. Tatsumi,et al.  Organic-Inorganic Hybrid Zeolites Containing Organic Frameworks , 2003, Science.

[43]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[44]  Avelino Corma,et al.  ITQ-18 a new delaminated stable zeolite , 2001 .

[45]  S. Takamizawa,et al.  Characterization of Microporous Copper(II) Dicarboxylates (Fumarate, Terephthalate, and trans-1,4-Cyclohexanedicarboxylate) by Gas Adsorption , 2001 .

[46]  A. Corma,et al.  AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity We thank the Spanish CICYT for financial support (project MAT97-1016-C02-01 and project MAT97-1207-C03-01). U.D. and M.E.D. thank the M.E.C. and M.E.A., respectively, for funding their doctoral fellowships. , 2000, Angewandte Chemie.

[47]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[48]  A. Corma,et al.  Delaminated zeolite precursors as selective acidic catalysts , 1998, Nature.

[49]  K. Sing,et al.  Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .

[50]  S. Takamizawa,et al.  Synthesis of New Adsorbent Copper(II) Terephthalate , 1997 .

[51]  M. Dubinin,et al.  The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. , 1960 .