1 Compositional data: some challenging problems.- 1.1 Introduction.- 1.2 Geochemical compositions of rocks.- 1.3 Sediments at different depths.- 1.4 Ternary diagrams.- 1.5 Partial analyses and subcompositions.- 1.6 Supervisory behaviour.- 1.7 Household budget surveys.- 1.8 Steroid metabolite patterns in adults and children.- 1.9 Activity patterns of a statistician.- 1.10 Calibration of white-cell compositions.- 1.11 Fruit evaluation.- 1.12 Firework mixtures.- 1.13 Clam ecology.- 1.14 Bibliographic notes.- Problems.- 2 The simplex as sample space.- 2.1 Choice of sample space.- 2.2 Compositions and simplexes.- 2.3 Spaces, vectors, matrices.- 2.4 Bases and compositions.- 2.5 Subcompositions.- 2.6 Amalgamations.- 2.7 Partitions.- 2.8 Perturbations.- 2.9 Geometrical representations of compositional data.- 2.10 Bibliographic notes.- Problems.- 3 The special difficulties of compositional data analysis.- 3.1 Introduction.- 3.2 High dimensionality.- 3.3 Absence of an interpretable covariance structure.- 3.4 Difficulty of parametric modelling.- 3.5 The mixture variation difficulty.- 3.6 Bibliographic notes.- Problems.- 4 Covariance structure.- 4.1 Fundamentals.- 4.2 Specification of the covariance structure.- 4.3 The compositional variation array.- 4.4 Recovery of the compositional variation array from the crude mean vector and covariance matrix.- 4.5 Subcompositional analysis.- 4.6 Matrix specifications of covariance structures.- 4.7 Some important elementary matrices.- 4.8 Relationships between the matrix specifications.- 4.9 Estimated matrices for hongite compositions.- 4.10 Logratios and logcontrasts.- 4.11 Covariance structure of a basis.- 4.12 Commentary.- 4.13 Bibliographic notes.- Problems.- 5 Properties of matrix covariance specifications.- 5.1 Logratio notation.- 5.2 Logcontrast variances and covariances.- 5.3 Permutations.- 5.4 Properties of P and QP matrices.- 5.5 Permutation invariants involving ?.- 5.6 Covariance matrix inverses.- 5.7 Subcompositions.- 5.8 Equivalence of characteristics of ?, ?, ?.- 5.9 Logratio-uncorrelated compositions.- 5.10 Isotropic covariance structures.- 5.11 Bibliographic notes.- Problems.- 6 Logistic normal distributions on the simplex.- 6.1 Introduction.- 6.2 The additive logistic normal class.- 6.3 Density function.- 6.4 Moment properties.- 6.5 Composition of a lognormal basis.- 6.6 Class-preserving properties.- 6.7 Conditional subcompositional properties.- 6.8 Perturbation properties.- 6.9 A central limit theorem.- 6.10 A characterization by logcontrasts.- 6.11 Relationships with the Dirichlet class.- 6.12 Potential for statistical analysis.- 6.13 The multiplicative logistic normal class.- 6.14 Partitioned logistic normal classes.- 6.15 Some notation.- 6.16 Bibliographic notes.- Problems.- 7 Logratio analysis of compositions.- 7.1 Introduction.- 7.2 Estimation of ? and ?.- 7.3 Validation: tests of logistic normality.- 7.4 Hypothesis testing strategy and techniques.- 7.5 Testing hypotheses about ? and ?.- 7.6 Logratio linear modelling.- 7.7 Testing logratio linear hypotheses.- 7.8 Further aspects of logratio linear modelling.- 7.9 An application of logratio linear modelling.- 7.10 Predictive distributions, atypicality indices and outliers.- 7.11 Statistical discrimination.- 7.12 Conditional compositional modelling.- 7.13 Bibliographic notes.- Problems.- 8 Dimension-reducing techniques.- 8.1 Introduction.- 8.2 Crude principal component analysis.- 8.3 Logcontrast principal component analysis.- 8.4 Applications of logcontrast principal component analysis.- 8.5 Subcompositional analysis.- 8.6 Applications of subcompositional analysis.- 8.7 Canonical component analysis.- 8.8 Bibliographic notes.- Problems.- 9 Bases and compositions.- 9.1 Fundamentals.- 9.2 Covariance relationships.- 9.3 Principal and canonical component comparisons.- 9.4 Distributional relationships.- 9.5 Compositional invariance.- 9.6 An application to household budget analysis.- 9.7 An application to clinical biochemistry.- 9.8 Reappraisal of an early shape and size analysis.- 9.9 Bibliographic notes.- Problems.- 10 Subcompositions and partitions.- 10.1 Introduction.- 10.2 Complete subcompositional independence.- 10.3 Partitions of order 1.- 10.4 Ordered sequences of partitions.- 10.5 Caveat.- 10.6 Partitions of higher order.- 10.7 Bibliographic notes.- Problems.- 11 Irregular compositional data.- 11.1 Introduction.- 11.2 Modelling imprecision in compositions.- 11.3 Analysis of sources of imprecision.- 11.4 Imprecision and tests of independence.- 11.5 Rounded or trace zeros.- 11.6 Essential zeros.- 11.7 Missing components.- 11.8 Bibliographic notes.- Problems.- 12 Compositions in a covariate role.- 12.1 Introduction.- 12.2 Calibration.- 12.3 A before-and-after treatment problem.- 12.4 Experiments with mixtures.- 12.5 An application to firework mixtures.- 12.6 Classification from compositions.- 12.7 An application to geological classification.- 12.8 Bibliographic notes.- Problems.- 13 Further distributions on the simplex.- 13.1 Some generalizations of the Dirichlet class.- 13.2 Some generalizations of the logistic normal classes.- 13.3 Recapitulation.- 13.4 The Ad(?,B) class.- 13.5 Maximum likelihood estimation.- 13.6 Neutrality and partition independence.- 13.7 Subcompositional independence.- 13.8 A generalized lognormal gamma distribution with compositional in variance.- 13.9 Discussion.- 13.10 Bibliographic notes.- Problems.- 14 Miscellaneous problems.- 14.1 Introduction.- 14.2 Multi-way compositions.- 14.3 Multi-stage compositions.- 14.4 Multiple compositions.- 14.5 Kernel density estimation for compositional data.- 14.6 Compositional stochastic processes.- 14.7 Relation to Bayesian statistical analysis.- 14.8 Compositional and directional data.- Problems.- Appendices.- A Algebraic properties of elementary matrices.- B Bibliography.- C Computer software for compositional data analysis.- D Data sets.- Author index.
[1]
S. Shen.
A method for discriminating between models describing compositional data
,
1982
.
[2]
Michael A. Stephens,et al.
Use of the von Mises distribution to analyse continuous proportions
,
1982
.
[3]
J. Cornell.
Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data
,
1982
.
[4]
J. Aitchison.
A new approach to null correlations of proportions
,
1981
.
[5]
J. Aitchison,et al.
Some Distribution Theory Related to the Analysis of Subjective Performance in Inferential Tasks
,
1981
.
[6]
John Aitchison,et al.
Distributions on the Simplex for the Analysis of Neutrality
,
1981
.
[7]
I. James.
Distributions Associated with Neutrality Properties for Random Proportions
,
1981
.
[8]
M. Stephens.
The Von Mises Distribution in p-Dimensions with Applications.
,
1980
.
[9]
J. Atchison,et al.
Logistic-normal distributions:Some properties and uses
,
1980
.
[10]
J. Mosimann,et al.
A New Characterization of the Dirichlet Distribution Through Neutrality
,
1980
.
[11]
I. Lauder,et al.
Statistical diagnosis from imprecise data
,
1979
.
[12]
J. Mosimann,et al.
NEW STATISTICAL METHODS FOR ALLOMETRY WITH APPLICATION TO FLORIDA RED‐WINGED BLACKBIRDS
,
1979,
Evolution; international journal of organic evolution.
[13]
A. Deaton.
Specification and Testing in Applied Demand Analysis
,
1978
.
[14]
D. Ratcliff,et al.
No-association of proportions
,
1978
.
[15]
R. Plackett,et al.
Dirichlet models for square contingency tables
,
1978
.
[16]
N. Draper,et al.
Designs in Three and Four Components For Mixtures Models With Inverse Terms
,
1977
.
[17]
N. Draper,et al.
A Mixtures Model with Inverse Terms
,
1977
.
[18]
John Aitchison,et al.
Statistical diagnosis when basic cases are not classified with certainty
,
1976
.
[19]
P. Altham.
Discrete variable analysis for individuals grouped into families
,
1976
.
[20]
I. James.
Multivariate Distributions Which Have Beta Conditional Distributions
,
1975
.
[21]
J. Mosimann.
Statistical Problems of Size and Shape. II. Characterizations of the Lognormal, Gamma and Dirichlet Distributions
,
1975
.
[22]
J. Mosimann.
Statistical Problems of Size and Shape. I. Biological Applications and Basic Theorems
,
1975
.
[23]
M. Stephens.
EDF Statistics for Goodness of Fit and Some Comparisons
,
1974
.
[24]
P. Holland,et al.
Simultaneous Estimation of Multinomial Cell Probabilities
,
1973
.
[25]
Tom Leonard.
Bayesian methods for binomial data
,
1972
.
[26]
A. Deaton,et al.
Surveys in Applied Economics: Models of Consumer Behaviour
,
1972
.
[27]
R. Thompson,et al.
Major Element Chemical Variation in the Eocene Lavas of the Isle of Skye, Scotland
,
1972
.
[28]
J. Anderson.
Separate sample logistic discrimination
,
1972
.
[29]
Bell Telephone,et al.
ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA
,
1972
.
[30]
J. Darroch,et al.
A Characterization of the Dirichlet Distribution
,
1971
.
[31]
J. Mosimann.
Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions
,
1970
.
[32]
Robert J. Connor,et al.
Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution
,
1969
.
[33]
A. T. Miesch.
The Constant Sum Problem in Geochemistry
,
1969
.
[34]
Day Ne,et al.
A GENERAL MAXIMUM LIKELIHOOD DISCRIMINANT
,
1967
.
[35]
Felix Chayes,et al.
An Approximate Statistical Test for Correlations between Proportions
,
1966,
The Journal of Geology.
[36]
D. Lindley.
The Bayesian Analysis of Contingency Tables
,
1964
.
[37]
C. Leser.
Forms of Engel functions
,
1963
.
[38]
F. Chayes,et al.
Numerical Correlation and Petrographic Variation
,
1962,
The Journal of Geology.
[39]
David R. Cox,et al.
Further Results on Tests of Separate Families of Hypotheses
,
1962
.
[40]
J. Mosimann.
On the compound multinomial distribution, the multivariate β-distribution, and correlations among proportions
,
1962
.
[41]
F. Chayes.
On correlation between variables of constant sum
,
1960
.
[42]
G. S. Watson,et al.
ANALYSIS OF DISPERSION ON A SPHERE
,
1956
.
[43]
J. Aitchison.
On the Distribution of a Positive Random Variable Having a Discrete Probability Mass at the Origin
,
1955
.
[44]
D. Cox.
9—SOME STATISTICAL ASPECTS OF MIXING AND BLENDING
,
1954
.
[45]
A. Krishnamoorthy,et al.
A Multivariate Gamma-Type Distribution
,
1951
.
[46]
N. L. Johnson,et al.
Systems of frequency curves generated by methods of translation.
,
1949,
Biometrika.
[47]
R. Fisher.
The fitting of gene frequencies to data on rhesus reactions.
,
1946,
Annals of eugenics.
[48]
S. S. Wilks.
The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses
,
1938
.
[49]
C. Pantin.
Problems of Relative Growth
,
1932,
Nature.
[50]
J. Huxley.
Problems of relative growth
,
1932
.
[51]
K. Pearson.
Mathematical contributions to the theory of evolution.—On a form of spurious correlation which may arise when indices are used in the measurement of organs
,
1897,
Proceedings of the Royal Society of London.
[52]
D. Mcalister,et al.
XIII. The law of the geometric mean
,
1879,
Proceedings of the Royal Society of London.