A review on microbial synthesis of hydrocarbons

Review summarizes comparative data on the intracellular hydrocarbons of different microorganisms (cyanobacteria, aerobic and anaerobic bacteria, yeasts, and mycelial fungi). Certain systematic groups of microorganisms are characterized by specific composition of intracellular hydrocarbons, in particular, cyanobacteria are unique in their ability to produce 7- and 8-methylheptadecanes; photosynthetic bacteria are distinguished by the synthesis of cyclic hydrocarbons (pristane and phytane), whereas in fungi, long-chain hydrocarbons are predominant. The synthesis of hydrocarbons by microorganisms depends considerably on the growth conditions that provides a way for its physiological regulation. The processes for microbiological production of extracellular aliphatic and volatile non-methane hydrocarbons are exemplified. Pathways for the biosynthesis of straight chain-, branched-, volatile non-methane hydrocarbons, and isoprenoids are described. Mechanisms of the hydrocarbon synthesis appear to be different in various microorganisms. The role of hydrocarbons in microorganisms is discussed.

[1]  K. Nagahama,et al.  l-Arginine is essential for the formation in vitro of ethylene by an extract of Pseudomonas syringae , 1991 .

[2]  H. Gruppen,et al.  Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids , 2000 .

[3]  T. Ogawa,et al.  Purification and some properties of a novel ethylene-forming enzyme produced by penicillium digitatum , 1989 .

[4]  W. Mitsuhashi,et al.  Isolation of (−)-cyatha-3,12-diene, a common biosynthetic intermediate of cyathane diterpenoids, from an erinacine-producing basidiomycete, Hericium erinaceum, and its formation in a cell-free system , 2001 .

[5]  K. Nagahama,et al.  Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene , 1992 .

[6]  P. Albro Confirmation of the Identification of the Major C-29 Hydrocarbons of Sarcina lutea , 1971, Journal of bacteriology.

[7]  P. Kolattukudy,et al.  Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Croteau,et al.  Evidence for an Elongation/Reduction/C1-Elimination Pathway in the Biosynthesis of n-Heptane in Xylem of Jeffrey Pine , 1996, Plant physiology.

[9]  R. W. Stone,et al.  Bacterial Aspects of the Origin of Petroleum , 1952 .

[10]  M. Rohmer,et al.  Isoprenoid biosynthesis via the methylerythritol phosphate pathway: accumulation of 2- C -methyl- d -erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli , 2002 .

[11]  N. Panikov,et al.  [Saturated C21-C33 hydrocarbons are involved in the self-regulation of Pseudomonas fluorescens adhesion to a glass surface]. , 2001, Mikrobiologiia.

[12]  S. Rossall,et al.  The production of antifungal volatiles by Bacillus subtilis. , 1993, The Journal of applied bacteriology.

[13]  J. Brooks,et al.  Natural gas seepage in the Gulf of Mexico , 1976 .

[14]  P. Albro,et al.  The biochemistry of long-chain, nonisoprenoid hydrocarbonss. II. The incorporation of acetate and the aliphatic chains of isoleucine and valine into fatty acids and hydrocarbon by Sarcina lutea in vivo. , 1969, Biochemistry.

[15]  J. Prosser,et al.  Extracellular factors affecting the adhesion ofPseudomonas fluorescens cells to glass surfaces , 2000, Microbiology.

[16]  P. Peng,et al.  Molecular and stable carbon isotopic composition of monomethylalkanes from one oil sand sample: source implications , 2003 .

[17]  M. Rohmer,et al.  Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. , 2002, Angewandte Chemie.

[18]  Y. Chisti,et al.  Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals , 2002, Critical reviews in biotechnology.

[19]  A. Khalid,et al.  Substrate-dependent biosynthesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings , 2005 .

[20]  P. Kolattukudy,et al.  Solubilization and purification of aldehyde‐generating fatty acyl‐CoA reductase from green alga Botryococcus braunii , 1995, FEBS letters.

[21]  J. Lynch Identification of Substrates and Isolation of Microorganisms responsible for Ethylene Production in the Soil , 1972, Nature.

[22]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[23]  A. Steinbüchel Production of rubber-like polymers by microorganisms. , 2003, Current opinion in microbiology.

[24]  Bernard Delmon,et al.  Studies in Surface Science and Catalysis , 1988 .

[25]  J. Davis Paraffinic hydrocarbons in the sulfate-reducing bacterium Desulfovibrio desulfuricans , 1968 .

[26]  Robert L. Campbell,et al.  ESCHERICHIA COLI K-12* , 1973 .

[27]  Ė. Galimov Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks , 1988 .

[28]  M. Rodríguez-Concepcíon,et al.  Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics1 , 2002, Plant Physiology.

[29]  R. Fall,et al.  Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway. , 2000, Journal of natural products.

[30]  J. Oró,et al.  14C Incorporation into the Fatty Acids and Aliphatic Hydrocarbons of Sarcina lutea , 1967, Journal of Bacteriology.

[31]  C. Schofield,et al.  Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase--the ethylene-forming enzyme. , 2004, Chemistry & biology.

[32]  J. Jones Studies on lipids of soil micro-organisms with particular reference to hydrocarbons. , 1969, Journal of general microbiology.

[33]  J. D. Walker,et al.  Aliphatic hydrocarbons of Cladosporium resinae cultured on glucose, glutamic acid, and hydrocarbons. , 1973, Applied microbiology.

[34]  Michiel Kleerebezem,et al.  Quorum sensing by peptide pheromones and two‐component signal‐transduction systems in Gram‐positive bacteria , 1997, Molecular microbiology.

[35]  S. Molin,et al.  Volatile metabolites from actinomycetes. , 2002, Journal of agricultural and food chemistry.

[36]  P. Kolattukudy,et al.  Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. , 1991, Archives of biochemistry and biophysics.

[37]  J. Gilbertson,et al.  Effects of different culture media and oxygen upon lipids ofEscherichia coli K-12 , 1974, Lipids.

[38]  E. Merdinger,et al.  Lipids of Debaryomyces hansenii , 1965, Journal of bacteriology.

[39]  P. Albro,et al.  Bacterial hydrocarbons: Occurrence, structure and metabolism , 1970, Lipids.

[40]  B. Valderrama Chapter 13 Bacterial hydrocarbon biosynthesis revisited , 2004 .

[41]  H. Mooibroek,et al.  Alternative sources of natural rubber , 2000, Applied Microbiology and Biotechnology.

[42]  W. Pollock,et al.  Bacteria produce the volatile hydrocarbon isoprene , 1995, Current Microbiology.

[43]  P. Kolattukudy,et al.  Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). , 1997, Archives of biochemistry and biophysics.

[44]  Yigal Elad,et al.  Ethylene biosynthesis in Botrytis cinerea. , 2002, FEMS microbiology ecology.

[45]  J. Oró,et al.  Aliphatic Hydrocarbons and Fatty Acids of Some Marine and Freshwater Microorganisms , 1967, Journal of bacteriology.

[46]  Andreev Lv,et al.  [Biosynthesis of hydrocarbons by alkane-oxidizing microorganisms]. , 1972 .

[47]  W. König,et al.  Diversity of diterpene hydrocarbons in fungus Phoma betae , 2001 .

[48]  O. Cléemput,et al.  Gaseous hydrocarbons in soil , 1986 .

[49]  M. Takahashi,et al.  An NADH:Fe(III)EDTA oxidoreductase from Cryptococcus albidus: an enzyme involved in ethylene production in vivo? , 1989, FEMS microbiology letters.

[50]  N. Kawai,et al.  A vibration of geomagnetic axis around the geographic north pole in the historic time , 1967 .

[51]  S. Primrose Ethylene-forming bacteria from soil and water. , 1976, Journal of general microbiology.

[52]  B. M. Didyk,et al.  ISOTOPE COMPOSITIONS OF GASES IN SEDIMENTS FROM THE CHILE CONTINENTAL MARGIN 1 , 2006 .

[53]  M. Calvin,et al.  Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. W. Curtis,et al.  Production of Ethylene by Fungi , 1968, Science.

[55]  S. Wright,et al.  Isoamyl alcohol (3‐methyl‐1‐butanol), a volatile anti‐cyanobacterial and phytotoxic product of some Bacillus spp. , 1991 .

[56]  R. Oremland Microbial Formation of Ethane in Anoxic Estuarine Sediments , 1981, Applied and environmental microbiology.

[57]  T. Ogawa,et al.  Preparation of a Cell-free Ethylene-forming System from Penicillium digitatum , 1986 .

[58]  T. Ogawa,et al.  Preparation of a Cell-Free, Isobutene-Forming System from Rhodotorula minuta , 1988, Applied and environmental microbiology.

[59]  A. Smith,et al.  Implications of ethylene production by bacteria for biological balance of soil , 1974, Nature.

[60]  N. Panikov,et al.  Saturated C21–C33Hydrocarbons Are Involved in the Self-Regulation of Pseudomonas fluorescensAdhesion to a Glass Surface , 2001, Microbiology.

[61]  P. Kolattukudy Introduction to natural waxes , 1976 .

[62]  C. Knowles,et al.  Ethylene formation by cell-free extracts of Escherichia coli , 1986, Archives of Microbiology.

[63]  P. Klingenberg Hans G. Schlegel: Allgemeine Mikrobiologie. 6. Aufl. unter Mitarbeit von K. SCHMIDT. 571 Seiten, 240 Abb., 39 Tab. Georg Thieme Verlag, Stuttgart, New York 1985, Preis: 34,– DM , 1986 .

[64]  A. Wipat,et al.  The Bacillus subtilis genome sequence: the molecular blueprint of a soil bacterium , 1999 .

[65]  H. Sahm,et al.  Isoprenoid biosynthesis in bacteria: two different pathways? , 1993, FEMS Microbiology Letters.

[66]  W. Eisenreich,et al.  The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. , 1998, Chemistry & biology.

[67]  H. S. Chae,et al.  Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. , 2005, Trends in plant science.

[68]  M. Rodríguez-Concepcíon,et al.  Elucidation of the Methylerythritol Phosphate Pathway for Isoprenoid Biosynthesis in Bacteria and Plastids. A Metabolic Milestone Achieved through Genomics1 , 2002, Plant Physiology.

[69]  P. L. Parker,et al.  Hydrocarbons of Blue-Green Algae: Geochemical Signfficance , 1969, Science.

[70]  T. Ogawa,et al.  Microbial Production of C3- and C4-Hydrocarbons under Aerobic Conditions , 1984 .

[71]  T. Chou,et al.  The biogenesis of ethylene in Penicillium digitatum. , 1973, Archives of biochemistry and biophysics.

[72]  S. Wright,et al.  Bacillus volatiles antagonize cyanobacteria , 1985 .

[73]  H. Weingart,et al.  Ethylene Production by Pseudomonas syringae Pathovars In Vitro and In Planta , 1997, Applied and environmental microbiology.

[74]  Roger E. Summons,et al.  A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia , 2003 .

[75]  T. V. Bagaeva The ability of sulfate-reducing bacteria of various taxonomic groups to synthesize extracellular hydrocarbons , 1997 .

[76]  J. Patching,et al.  Ethylene production by soil microorganisms , 1977, Applied and environmental microbiology.

[77]  T. Lorenson,et al.  Methane and other hydrocarbon gases in sediment from the southeastern North American continental margin , 2000 .

[78]  P. Kolattukudy Chemistry and biochemistry of natural waxes , 1976 .

[79]  M. Calvin,et al.  Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridium and Chlorogloea fritschii , 1968 .

[80]  S. Primrose Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli. , 1977, Journal of general microbiology.

[81]  Myong-Ok Park,et al.  New Pathway for Long-Chain n-Alkane Synthesis via 1-Alcohol in Vibrio furnissii M1 , 2005, Journal of bacteriology.

[82]  治雄 中村,et al.  脂肪酸負荷のヒト末梢血単核細胞3-Hydroxy-3-methylglutaryl coenzyme A reductase活性に及ぼす影響 , 1988 .

[83]  J. Lynch,et al.  Formation of Ethylene by a Soil Fungus , 1974 .

[84]  B. Glick,et al.  Transgenic plants with altered ethylene biosynthesis or perception. , 2003, Biotechnology advances.

[85]  T. Boller,et al.  Ethylene biosynthesis in Fusarium oxysporum f. sp. tulipae proceeds from glutamate/2-oxoglutarate and requires oxygen and ferrous ions in vivo , 1991, Archives of Microbiology.

[86]  J. Weete,et al.  Chemotaxonomic and ultrastructural studies on three species of Tilletia occurring on wheat. , 1968, Canadian journal of microbiology.

[87]  T. Ogawa,et al.  Production of Isobutene by Rhodotorula Yeasts , 1985 .

[88]  J. Hunt,et al.  Volatile C1C7 organic compounds in an anoxic sediment core from the Pettaquamscutt River (Rhode Island, U.S.A.) , 1983 .

[89]  E. Greenberg,et al.  Quorum Sensing: the Explanation of a Curious Phenomenon Reveals a Common Characteristic of Bacteria , 1999, Journal of bacteriology.

[90]  Y. Maeda,et al.  The ethylene action in the development of cellular slime molds: an analogy to higher plants , 1992, Protoplasma.

[91]  P. Kolattukudy Biosynthesis of paraffins in Brassica oleracea: Fatty acid elongation-decarboxylation as a plausible pathway , 1967 .

[92]  R. Lemmon Chemical Evolution , 1972, Nature.

[93]  W. Stiekema,et al.  Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. , 1995, The Plant cell.

[94]  M. Calvin,et al.  Biosynthesis of alkanes in Nostoc muscorum. , 1969, Journal of the American Chemical Society.

[95]  M. Matsuoka,et al.  Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae , 1997 .

[96]  K. Arndt,et al.  Chemistry and Biochemistry of Natural Waxes , 1977 .

[97]  C. Oppenheimer Bacterial production of hydrocarbon-like materials , 1965 .

[98]  D. Fisher,et al.  Fatty Acid and Hydrocarbon Constituents of the Surface and Wall Lipids of Some Fungal Spores , 1972 .

[99]  V. Dembitsky,et al.  Branched Alkanes and Other Apolar Compounds Produced by the Cyanobacterium Microcoleus vaginatusfrom the Negev Desert , 2001, Russian Journal of Bioorganic Chemistry.

[100]  S. Tanase,et al.  Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae , 1995 .

[101]  C. Somerville,et al.  Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase , 1997, Journal of bacteriology.

[102]  F. B. Abeles,et al.  Ethylene in Plant Biology , 2022 .

[103]  J. Wiesner,et al.  Occurrence of nonmevalonate and mevalonate pathways for isoprenoid biosynthesis in bacteria of different taxonomic groups , 2005, Microbiology.

[104]  P. Kolattukudy,et al.  A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[105]  R. Fall,et al.  Characterization of Aspen Isoprene Synthase, an Enzyme Responsible for Leaf Isoprene Emission to the Atmosphere (*) , 1995, The Journal of Biological Chemistry.

[106]  R. Light,et al.  Biosynthesis of hydrocarbons in Anabaena variabilis. Incorporation of [methyl-14C]- and [methyl-2H3]methionine into 7- and 8-methylheptadecanes. , 1970, Biochemistry.

[107]  A. Klaus,et al.  Proceedings of the Ocean Drilling Program, Scientific Results , 2001 .

[108]  H. Matsui,et al.  Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. , 1999, Bioscience, biotechnology, and biochemistry.

[109]  B. M. Didyk,et al.  24. ISOTOPE COMPOSITIONS OF GASES IN SEDIMENTS FROM THE CHILE CONTINENTAL MARGIN1 , 1995 .

[110]  M. Fabre-Joneau,et al.  Nature et répartition des hydrocarbures chez la levure Candida utilis. , 1969 .

[111]  R. Sweeney Petroleum-related hydrocarbon seep age in a Recent North Sea sediment , 1988 .

[112]  H. Seto,et al.  Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenly diphosphate in Streptomyces aeriouvifer , 1996 .

[113]  J. Rullkötter,et al.  Mono-, di- and trimethyl-branched alkanes in cultures of the filamentous cyanobacterium Calothrix scopulorum , 1999 .

[114]  T. Vogel,et al.  Low-temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.) , 1982 .

[115]  W. Hutton,et al.  Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic arabidopsis. , 2000, Plant physiology.

[116]  J. Weete Aliphatic hydrocarbons of the fungi , 1972 .

[117]  S. Tanase,et al.  Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2. , 1991, Journal of general microbiology.

[118]  S. J. Morrison,et al.  Aliphatic hydrocarbon contents of various members of the family micrococcaceae , 1970, Lipids.

[119]  J. Weete Fungal Lipid Biochemistry , 1974, Monographs in Lipid Research.

[120]  Galina S. Kalacheva,et al.  Lipid and hydrocarbon compositions of a collection strain and a wild sample of the green microalga Botryococcus , 2002, Aquatic Ecology.

[121]  C. W. Bird,et al.  Formation of hydrocarbons by micro-organisms , 1974 .

[122]  P. Liss,et al.  Seasonal emissions of isoprene and other reactive hydrocarbon gases from the ocean , 1997 .

[123]  David H. Parker,et al.  Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes , 2002, Applied and Environmental Microbiology.

[124]  T. Ogawa,et al.  Microbial production of C2-hydrocarbons, ethane, ethylene and acetylene , 1984 .

[125]  R. Linderman,et al.  Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots. , 1980, Canadian journal of microbiology.

[126]  P. Kolattukudy,et al.  Solubilization, partial purification, and characterization of a fatty aldehyde decarbonylase from a higher plant, Pisum sativum. , 2000, Archives of biochemistry and biophysics.

[127]  D. Osborne,et al.  Production of ethylene and other volatiles and changes in cellulase and laccase activities during the life cycle of the cultivated mushroom, Agaricus bisporus. , 1975, Journal of general microbiology.

[128]  J. Laseter,et al.  Alkanes in Fungal Spores , 1966, Science.

[129]  J. Jones,et al.  Major paraffin constituents of microbial cells with particular references toChromatium sp. , 2004, Archiv für Mikrobiologie.

[130]  E. Merdinger,et al.  Distribution of C14 from Glucose-1-C14 in the Lipid Fractions of Debaryomyces hansenii , 1966, Journal of bacteriology.

[131]  M. Holmes,et al.  Submarine Seepage of Natural Gas in Norton Sound, Alaska , 1977, Science.

[132]  R. Croteau,et al.  Terpenoid metabolism. , 1995, The Plant cell.