Linear time computable problems and first-order descriptions

It is well known that every algorithmic problem definable by a formula of first-order logic can be solved in polynomial time, since all these problems are in L (see Aho and Ullman (1979) and Immerman (1987)). Using an old technique of Hanf (Hanf 1965) and other techniques developed to prove the decidability of formal theories in mathematical logic, it is shown that an arbitrary FO-problem over relational structures of bounded degree can be solved in linear time.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[3]  Serge Abiteboul,et al.  Fixpoint logics, relational machines, and computational complexity , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[4]  M. Felleisen,et al.  on the Principles of Programming Languages , 1997 .

[5]  Uriel G. Rothblum,et al.  Linear Problems and Linear Algorithms , 1995, J. Symb. Comput..

[6]  Nadia Creignou,et al.  The Class of Problems That are Linearly Equivalent to Satisfiability or a Uniform Method for Proving NP-Completeness , 1995, Theor. Comput. Sci..

[7]  C. Ward Henson,et al.  A Uniform Method for Proving Lower Bounds on the Computational Complexity of Logical Theories , 1990, Ann. Pure Appl. Log..

[8]  Michel de Rougemont Second-order and Inductive Definability on Finite Structures , 1987, Math. Log. Q..

[9]  Erich Grädel On the Notion of Linear Time Computability , 1990, Int. J. Found. Comput. Sci..

[10]  Alfred V. Aho,et al.  Universality of data retrieval languages , 1979, POPL.

[11]  Ronald Fagin,et al.  Reachability is harder for directed than for undirected finite graphs , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[12]  David Harel,et al.  Structure and complexity of relational queries , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[13]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[14]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1990, JACM.

[15]  Peter L. Hammer,et al.  Proceedings of the 4th Twente workshop on Graphs and combinatorial optimization , 1997 .

[16]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..

[17]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[18]  David Harel,et al.  Computable Queries for Relational Data Bases , 1980, J. Comput. Syst. Sci..

[19]  Bruno Courcelle,et al.  Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..

[20]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[21]  Alonzo Church,et al.  Some theorems on definability and decidability , 1952, Journal of Symbolic Logic.

[22]  Ronald Fagin,et al.  On monadic NP vs. monadic co-NP , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[23]  Kurt Mehlhorn,et al.  Graph Algorithm and NP-Completeness , 1984 .

[24]  Kurt Hauschild,et al.  Interpretierbarkeit in der Gruppenthoerie , 1971 .

[25]  Elias Dahlhaus,et al.  Reduction to NP-complete problems by interpretations , 1983, Logic and Machines.

[26]  Etienne Grandjean,et al.  Linear Time Algorithms and NP-Complete Problems , 1992, SIAM J. Comput..

[27]  Detlef Seese,et al.  Interpretability and tree automata: A simple way to solve algorithmic problems on graphs closely related to trees , 1992, Tree Automata and Languages.

[28]  Antonio Restivo,et al.  Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems , 1996, Inf. Comput..

[29]  Wolfgang Thomas On Logics, Tilings, and Automata , 1991, ICALP.

[30]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[31]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[32]  Michael A. Taitslin,et al.  Is First Order Contained in an Initial Segment of PTIME? , 1994, CSL.