Bootstrap confidence intervals of CNpk for exponentiated Fréchet distribution

[1]  Chi-Hyuck Jun,et al.  Bootstrap confidence intervals of generalized process capability index Cpyk for Lindley and power Lindley distributions , 2018, Commun. Stat. Simul. Comput..

[2]  Muhammad Kashif,et al.  Bootstrap Confidence Intervals of the Modified Process Capability Index for Weibull distribution , 2017 .

[3]  Muhammad Kashif,et al.  Evaluation of Modified Non-Normal Process Capability Index and Its Bootstrap Confidence Intervals , 2017, IEEE Access.

[4]  Muhammad Aslam,et al.  Bootstrap confidence intervals of CNpk for inverse Rayleigh and log-logistic distributions , 2016 .

[5]  K. Rosaiah,et al.  Estimation of stress-strength reliability from exponentiated Fréchet distribution , 2016, The International Journal of Advanced Manufacturing Technology.

[6]  Amjad D. Al-Nasser,et al.  Acceptance sampling plan based on truncated life tests for exponentiated fréchet distribution , 2013 .

[7]  W. Panichkitkosolkul Bootstrap Confidence Intervals of the Difference between Two Process Capability Indices for Half Logistic Distribution , 2012 .

[8]  Michael Perakis,et al.  Estimation of differences between process capability indices C pm or C pmk for two processes , 2010 .

[9]  Shu-Fei Wu,et al.  A note on the asymptotic distribution of the process capability index C pmk , 2010 .

[10]  Cheng Peng Parametric Lower Confidence Limits of Quantile-Based Process Capability Indices , 2010 .

[11]  Kuen-Suan Chen,et al.  Process capability analysis chart with the application of Cpm , 2008 .

[12]  Samuel Kotz,et al.  The Exponentiated Type Distributions , 2006 .

[13]  J. L. Folks,et al.  The Inverse Gaussian Distribution and its Statistical Application—A Review , 1978 .

[14]  Nilson Arrais Quality control handbook , 1966 .

[15]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[16]  Taiwan Roc,et al.  AN APPLICATION OF NON-NORMAL PROCESS CAPABILITY INDICES , 1997 .

[17]  Vani H. Sundaraiyer,et al.  Estimation of a process capability index for inverse gaussian distribution , 1996 .

[18]  W. Pearn,et al.  Estimating process capability indices for non‐normal pearsonian populations , 1995 .

[19]  Subrahmaniam Kocherlakota,et al.  Confidence intervals for the process capability ratio based on robust estimators , 1994 .

[20]  Samuel Kotz,et al.  Process Capability Indices , 1993 .

[21]  Wen Lea Pearn,et al.  Flexible process capability indices , 1992 .

[22]  LeRoy A. Franklin,et al.  Bootstrap confidence interval estimates of cpk: an introduction , 1991 .