Complexity of near-optimal robust versions of multilevel optimization problems

Near-optimality robustness extends multilevel optimization with a limited deviation of a lower level from its optimal solution, anticipated by higher levels. We analyze the complexity of near-optimal robust multilevel problems, where near-optimal robustness is modelled through additional adversarial decision-makers. Near-optimal robust versions of multilevel problems are shown to remain in the same complexity class as the problem without near-optimality robustness under general conditions.

[1]  Osman Y. Özaltın,et al.  On a class of bilevel linear mixed-integer programs in adversarial settings , 2018, J. Glob. Optim..

[2]  Nataliya I. Kalashnykova,et al.  Bilevel Programming Problems , 2015 .

[3]  Stefano Coniglio,et al.  A Unified Framework for Multistage and Multilevel Mixed Integer Linear Optimization , 2021, Springer Optimization and Its Applications.

[4]  Georg Still,et al.  Solving bilevel programs with the KKT-approach , 2012, Mathematical Programming.

[5]  S. Dempe,et al.  Solution of bilevel optimization problems using the KKT approach , 2019, Optimization.

[6]  Gerhard J. Woeginger,et al.  Complexity and Multi-level Optimization , 2012 .

[7]  Gerhard J. Woeginger,et al.  A Study on the Computational Complexity of the Bilevel Knapsack Problem , 2014, SIAM J. Optim..

[8]  Matteo Fischetti,et al.  A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs , 2017, Oper. Res..

[9]  Stephan Dempe,et al.  A special three-level optimization problem , 2020, J. Glob. Optim..

[10]  S. J. Chung NP-Completeness of the linear complementarity problem , 1989 .

[11]  Pierre Hansen,et al.  Links Between Linear Bilevel and Mixed 0–1 Programming Problems , 1995 .

[12]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[13]  Oleg A. Prokopyev,et al.  On Bilevel Optimization with Inexact Follower , 2020, Decis. Anal..

[14]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[15]  Berç Rustem,et al.  Pessimistic Bilevel Optimization , 2013, SIAM J. Optim..

[16]  Robert G. Jeroslow,et al.  The polynomial hierarchy and a simple model for competitive analysis , 1985, Math. Program..

[17]  Lane A. Hemaspaandra,et al.  SIGACT news complexity theory comun 37 , 2002, SIGA.

[18]  Ted K. Ralphs,et al.  A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation , 2020, Mathematical Programming Computation.

[19]  Luce Brotcorne,et al.  Near-optimal Robust Bilevel Optimization , 2019, ArXiv.