Deriving Animal Movement Behaviors Using Movement Parameters Extracted from Location Data

We present a methodology for distinguishing between three types of animal movement behavior (foraging, resting, and walking) based on high-frequency tracking data. For each animal we quantify an individual movement path. A movement path is a temporal sequence consisting of the steps through space taken by an animal. By selecting a set of appropriate movement parameters, we develop a method to assess movement behavioral states, reflected by changes in the movement parameters. The two fundamental tasks of our study are segmentation and clustering. By segmentation, we mean the partitioning of the trajectory into segments, which are homogeneous in terms of their movement parameters. By clustering, we mean grouping similar segments together according to their estimated movement parameters. The proposed method is evaluated using field observations (done by humans) of movement behavior. We found that on average, our method agreed with the observational data (ground truth) at a level of 80.75% ± 5.9% (SE).

[1]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[2]  Tetsuji Satoh,et al.  Shape-Based Similarity Query for Trajectory of Mobile Objects , 2003, Mobile Data Management.

[3]  Frederic Bartumeus,et al.  Expectation-Maximization Binary Clustering for Behavioural Annotation , 2015, PloS one.

[4]  Kathleen M. O’Reilly,et al.  Extending the Functionality of Behavioural Change-Point Analysis with k-Means Clustering: A Case Study with the Little Penguin (Eudyptula minor) , 2015, PloS one.

[5]  John F. Roddick,et al.  Geographic Data Mining and Knowledge Discovery , 2001 .

[6]  Ross Purves,et al.  How fast is a cow? Cross‐Scale Analysis of Movement Data , 2011, Trans. GIS.

[7]  Bettina Speckmann,et al.  Analysis and visualisation of movement: an interdisciplinary review , 2015, Movement Ecology.

[8]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[9]  Eliezer Gurarie,et al.  What is the animal doing? Tools for exploring behavioural structure in animal movements. , 2016, The Journal of animal ecology.

[10]  Clément Calenge,et al.  The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals , 2006 .

[11]  Niko Balkenhol,et al.  Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns , 2016, Movement ecology.

[12]  Darcy R. Visscher,et al.  Identifying Movement States From Location Data Using Cluster Analysis , 2010 .

[13]  Kees Mulder,et al.  Circular Statistics in R , 2015 .

[14]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[15]  Patrick J Butler,et al.  Biotelemetry: a mechanistic approach to ecology. , 2004, Trends in ecology & evolution.

[16]  Ying Guo,et al.  Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model , 2009 .

[17]  Claire M Postlethwaite,et al.  A new multi-scale measure for analysing animal movement data. , 2013, Journal of theoretical biology.

[18]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[19]  Jiawei Han,et al.  An overview of clustering methods in geographic data analysis , 2009 .

[20]  Y. Tremblay,et al.  Splitting animal trajectories into fine-scale behaviorally consistent movement units: breaking points relate to external stimuli in a foraging seabird , 2013, Behavioral Ecology and Sociobiology.

[21]  P. A. Vijaya,et al.  Leaders - Subleaders: An efficient hierarchical clustering algorithm for large data sets , 2004, Pattern Recognit. Lett..

[22]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[23]  Lucas N Joppa,et al.  Understanding movement data and movement processes: current and emerging directions. , 2008, Ecology letters.

[24]  Eliezer Gurarie,et al.  Behavioral Change Point Analysis in R: The bcpa package , 2014 .

[25]  Manuela Royer-Carenzi,et al.  The exploratory analysis of autocorrelation in animal-movement studies , 2010, Ecological Research.

[26]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[27]  Daniel P. Costa,et al.  Fractal landscape method: an alternative approach to measuring area-restricted searching behavior , 2007, Journal of Experimental Biology.

[28]  Nikos Pelekis,et al.  Visually exploring movement data via similarity-based analysis , 2012, Journal of Intelligent Information Systems.

[29]  Fionn Murtagh,et al.  A Survey of Recent Advances in Hierarchical Clustering Algorithms , 1983, Comput. J..

[30]  Stéphane Dray,et al.  The concept of animals' trajectories from a data analysis perspective , 2009, Ecol. Informatics.

[31]  F. Cagnacci,et al.  Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[33]  Herbert H. T. Prins,et al.  Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat , 2015, PloS one.

[34]  Dimitrios Gunopulos,et al.  Rotation invariant distance measures for trajectories , 2004, KDD.

[35]  Torkild Tveraa,et al.  USING FIRST‐PASSAGE TIME IN THE ANALYSIS OF AREA‐RESTRICTED SEARCH AND HABITAT SELECTION , 2003 .

[36]  S. Benhamou How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? , 2004, Journal of theoretical biology.

[37]  Stoyan V. Stoyanov,et al.  Probability Distances and Probability Metrics: Definitions , 2013 .

[38]  Amy Hurford,et al.  GPS Measurement Error Gives Rise to Spurious 180° Turning Angles and Strong Directional Biases in Animal Movement Data , 2009, PloS one.

[39]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[40]  Ian D. Jonsen,et al.  META‐ANALYSIS OF ANIMAL MOVEMENT USING STATE‐SPACE MODELS , 2003 .

[41]  Lior Rokach,et al.  A survey of Clustering Algorithms , 2010, Data Mining and Knowledge Discovery Handbook.

[42]  Thomas Devogele,et al.  Spatio-temporal trajectory analysis of mobile objects following the same itinerary , 2010 .

[43]  Martin Egelhaaf,et al.  Identifying Prototypical Components in Behaviour Using Clustering Algorithms , 2010, PloS one.

[44]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[45]  Cecil C. Bridges,et al.  Hierarchical Cluster Analysis , 1966 .

[46]  Helmut Alt,et al.  Computing the Fréchet distance between two polygonal curves , 1995, Int. J. Comput. Geom. Appl..

[47]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[48]  Elena Deza,et al.  Encyclopedia of Distances , 2014 .

[49]  Leah Edelstein-Keshet,et al.  Inferring resource distributions from Atlantic bluefin tuna movements: an analysis based on net displacement and length of track. , 2007, Journal of theoretical biology.

[50]  Dino Pedreschi,et al.  Visually driven analysis of movement data by progressive clustering , 2008, Inf. Vis..

[51]  Eliezer Gurarie,et al.  A novel method for identifying behavioural changes in animal movement data. , 2009, Ecology letters.

[52]  Leonidas J. Guibas,et al.  Discrete Geometric Shapes: Matching, Interpolation, and Approximation , 2000, Handbook of Computational Geometry.

[53]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[54]  M. Lavielle Detection of multiple changes in a sequence of dependent variables , 1999 .

[55]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[56]  Robert Weibel,et al.  Movement similarity assessment using symbolic representation of trajectories , 2012, Int. J. Geogr. Inf. Sci..

[57]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[58]  Mac Schwager,et al.  Robust classification of animal tracking data , 2007 .

[59]  L. Hubert Hierarchical Cluster Analysis , 2015 .

[60]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[61]  G. Schwarz Estimating the Dimension of a Model , 1978 .