Advanced digital and analog error correction codes

[1]  Sueli I. Rodrigues Costa,et al.  Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.

[2]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[3]  Haralabos C. Papadopoulos,et al.  Maximum-likelihood estimation of a class of chaotic signals , 1995, IEEE Trans. Inf. Theory.

[4]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .

[5]  L. Fenton The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .

[6]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[7]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[8]  Jan Dhaene,et al.  Comparing Approximations for Risk Measures of Sums of Nonindependent Lognormal Random Variables , 2005 .

[9]  Werner Henkel Multiple Error Correction with Analog Codes , 1988, AAECC.

[10]  Leon O. Chua,et al.  Spread Spectrum Communication Through Modulation of Chaos , 1993 .

[11]  G. Robert Redinbo Decoding real block codes: Activity detection Wiener estimation , 2000, IEEE Trans. Inf. Theory.

[12]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[13]  Leon O. Chua,et al.  Secure communication via chaotic parameter modulation , 1996 .

[14]  Costas N. Georghiades,et al.  Low-complexity, capacity-approaching coding schemes: design, analysis and applications , 2002 .

[15]  D. Luengo,et al.  Piecewise-linear maps , 2000, IEEE Signal Processing Letters.

[16]  I. Campos-Cantón,et al.  A simple circuit realization of the tent map , 2008 .

[17]  G. Kolumban,et al.  Differential chaos shift keying : A robust coding for chaotic communication , 1996 .

[18]  Norman C. Beaulieu,et al.  Estimating the distribution of a sum of independent lognormal random variables , 1995, IEEE Trans. Commun..

[19]  G. R. Redinbo,et al.  Decoding real-number convolutional codes: Change detection, Kalman estimation , 1997, IEEE Trans. Inf. Theory.

[20]  Andrea Montanari,et al.  Why We Can Not Surpass Capacity: The Matching Condition , 2005, ArXiv.

[21]  Leon O. Chua,et al.  Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.

[22]  Suku Nair,et al.  Real-Number Codes for Bault-Tolerant Matrix Operations On Processor Arrays , 1990, IEEE Trans. Computers.

[23]  Johan Hokfelt On the Design of Turbo Codes , 2000 .

[24]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[25]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[26]  A. Abu-Dayya,et al.  Outage probabilities in the presence of correlated lognormal interferers , 1994 .

[27]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[28]  Werner Henkel Analog Codes for Peak-to-Average Ratio Reduction , 1999 .

[29]  Kai Xie,et al.  On the Analysis and Design of Good Algebraic Interleavers , 2006 .

[30]  Werner Henkel,et al.  Turbo-like iterative least-squares decoding of analogue codes , 2005 .

[31]  Fortunato Santucci,et al.  Generalized moment matching for the linear combination of lognormal RVs: application to outage analysis in wireless systems , 2006, IEEE Transactions on Wireless Communications.

[32]  S. Schwartz,et al.  On the distribution function and moments of power sums with log-normal components , 1982, The Bell System Technical Journal.

[33]  G. Mazzini,et al.  Corrections to "Chaotic Complex Spreading Sequences for Asynchronous DS-CDMA—Part I: System Modeling and Results" 1 , 1998 .

[34]  Wen-tao Song,et al.  Chaotic turbo codes in secure communication , 2001, EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439).

[35]  David Luengo,et al.  Estimation of a certain class of chaotic signals: An em-based approach , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[36]  Georgios B. Giannakis,et al.  Complex-field coding for OFDM over fading wireless channels , 2003, IEEE Trans. Inf. Theory.

[37]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[38]  Christoforos N. Hadjicostis,et al.  Determination of the Number of Errors in DFT Codes Subject to Low-Level Quantization Noise , 2008, IEEE Transactions on Signal Processing.

[39]  Gregory W. Wornell,et al.  Analog error-correcting codes based on chaotic dynamical systems , 1998, IEEE Trans. Commun..

[40]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[41]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[42]  Nikolai F. Rulkov,et al.  Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.

[43]  Jing Li,et al.  Analog turbo codes: A chaotic construction , 2009, 2009 IEEE International Symposium on Information Theory.

[44]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[45]  Minyue Fu,et al.  Stochastic analysis of turbo decoding , 2005, IEEE Transactions on Information Theory.

[46]  Jing Li,et al.  Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity , 2004, IEEE Transactions on Information Theory.

[47]  Norman C. Beaulieu,et al.  An optimal lognormal approximation to lognormal sum distributions , 2004, IEEE Transactions on Vehicular Technology.

[48]  Christine Guillemot,et al.  Characterization of a Class of Error Correcting Frames for Robust Signal Transmission over Wireless Communication Channels , 2005, EURASIP J. Adv. Signal Process..

[49]  David Luengo,et al.  Bayesian estimation of chaotic signals generated by piecewise-linear maps , 2003, Signal Process..

[50]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[51]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[52]  Ja-Ling Wu,et al.  Discrete cosine transform in error control coding , 1995, IEEE Trans. Commun..

[53]  Venkatesh Nagesha,et al.  Methods for chaotic signal estimation , 1995, IEEE Trans. Signal Process..

[54]  Farokh Marvasti,et al.  Robust decoding of DFT-based error-control codes for impulsive and additive white Gaussian noise channels , 2005 .

[55]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[56]  Pierre Duhamel,et al.  Joint Source-Channel Coding Using Real BCH Codes for Robust Image Transmission , 2007, IEEE Transactions on Image Processing.

[57]  Daniel J. Costello,et al.  New deterministic interleaver designs for turbo codes , 2000, IEEE Trans. Inf. Theory.

[58]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[59]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[60]  Chai Wah Wu,et al.  A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .

[61]  Leon O. Chua,et al.  Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.

[62]  David Luengo,et al.  Bayesian estimation of a class of chaotic signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[63]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[64]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[65]  S. S. Pietrobon,et al.  Chaotic turbo codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[66]  T. Marshall,et al.  Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..

[67]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[68]  Alexander Vardy,et al.  Analog codes on graphs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[69]  Anamitra Makur,et al.  Improved Coding-Theoretic and Subspace-Based Decoding Algorithms for a Wider Class of DCT and DST Codes , 2010, IEEE Transactions on Signal Processing.