Advanced digital and analog error correction codes
暂无分享,去创建一个
[1] Sueli I. Rodrigues Costa,et al. Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.
[2] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[3] Haralabos C. Papadopoulos,et al. Maximum-likelihood estimation of a class of chaotic signals , 1995, IEEE Trans. Inf. Theory.
[4] Riccardo Rovatti,et al. Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .
[5] L. Fenton. The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .
[6] H. Jin,et al. Irregular repeat accumulate codes , 2000 .
[7] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[8] Jan Dhaene,et al. Comparing Approximations for Risk Measures of Sums of Nonindependent Lognormal Random Variables , 2005 .
[9] Werner Henkel. Multiple Error Correction with Analog Codes , 1988, AAECC.
[10] Leon O. Chua,et al. Spread Spectrum Communication Through Modulation of Chaos , 1993 .
[11] G. Robert Redinbo. Decoding real block codes: Activity detection Wiener estimation , 2000, IEEE Trans. Inf. Theory.
[12] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[13] Leon O. Chua,et al. Secure communication via chaotic parameter modulation , 1996 .
[14] Costas N. Georghiades,et al. Low-complexity, capacity-approaching coding schemes: design, analysis and applications , 2002 .
[15] D. Luengo,et al. Piecewise-linear maps , 2000, IEEE Signal Processing Letters.
[16] I. Campos-Cantón,et al. A simple circuit realization of the tent map , 2008 .
[17] G. Kolumban,et al. Differential chaos shift keying : A robust coding for chaotic communication , 1996 .
[18] Norman C. Beaulieu,et al. Estimating the distribution of a sum of independent lognormal random variables , 1995, IEEE Trans. Commun..
[19] G. R. Redinbo,et al. Decoding real-number convolutional codes: Change detection, Kalman estimation , 1997, IEEE Trans. Inf. Theory.
[20] Andrea Montanari,et al. Why We Can Not Surpass Capacity: The Matching Condition , 2005, ArXiv.
[21] Leon O. Chua,et al. Experimental Demonstration of Secure Communications via Chaotic Synchronization , 1992, Chua's Circuit.
[22] Suku Nair,et al. Real-Number Codes for Bault-Tolerant Matrix Operations On Processor Arrays , 1990, IEEE Trans. Computers.
[23] Johan Hokfelt. On the Design of Turbo Codes , 2000 .
[24] Niclas Wiberg,et al. Codes and Decoding on General Graphs , 1996 .
[25] Stephen B. Wicker,et al. Turbo Coding , 1998 .
[26] A. Abu-Dayya,et al. Outage probabilities in the presence of correlated lognormal interferers , 1994 .
[27] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[28] Werner Henkel. Analog Codes for Peak-to-Average Ratio Reduction , 1999 .
[29] Kai Xie,et al. On the Analysis and Design of Good Algebraic Interleavers , 2006 .
[30] Werner Henkel,et al. Turbo-like iterative least-squares decoding of analogue codes , 2005 .
[31] Fortunato Santucci,et al. Generalized moment matching for the linear combination of lognormal RVs: application to outage analysis in wireless systems , 2006, IEEE Transactions on Wireless Communications.
[32] S. Schwartz,et al. On the distribution function and moments of power sums with log-normal components , 1982, The Bell System Technical Journal.
[33] G. Mazzini,et al. Corrections to "Chaotic Complex Spreading Sequences for Asynchronous DS-CDMA—Part I: System Modeling and Results" 1 , 1998 .
[34] Wen-tao Song,et al. Chaotic turbo codes in secure communication , 2001, EUROCON'2001. International Conference on Trends in Communications. Technical Program, Proceedings (Cat. No.01EX439).
[35] David Luengo,et al. Estimation of a certain class of chaotic signals: An em-based approach , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[36] Georgios B. Giannakis,et al. Complex-field coding for OFDM over fading wireless channels , 2003, IEEE Trans. Inf. Theory.
[37] J. Wolfowitz,et al. Introduction to the Theory of Statistics. , 1951 .
[38] Christoforos N. Hadjicostis,et al. Determination of the Number of Errors in DFT Codes Subject to Low-Level Quantization Noise , 2008, IEEE Transactions on Signal Processing.
[39] Gregory W. Wornell,et al. Analog error-correcting codes based on chaotic dynamical systems , 1998, IEEE Trans. Commun..
[40] Stephan ten Brink,et al. Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.
[41] S. Dolinar,et al. Weight distributions for turbo codes using random and nonrandom permutations , 1995 .
[42] Nikolai F. Rulkov,et al. Chaotic pulse position modulation: a robust method of communicating with chaos , 2000, IEEE Communications Letters.
[43] Jing Li,et al. Analog turbo codes: A chaotic construction , 2009, 2009 IEEE International Symposium on Information Theory.
[44] Alexander Vardy,et al. Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.
[45] Minyue Fu,et al. Stochastic analysis of turbo decoding , 2005, IEEE Transactions on Information Theory.
[46] Jing Li,et al. Product accumulate codes: a class of codes with near-capacity performance and low decoding complexity , 2004, IEEE Transactions on Information Theory.
[47] Norman C. Beaulieu,et al. An optimal lognormal approximation to lognormal sum distributions , 2004, IEEE Transactions on Vehicular Technology.
[48] Christine Guillemot,et al. Characterization of a Class of Error Correcting Frames for Robust Signal Transmission over Wireless Communication Channels , 2005, EURASIP J. Adv. Signal Process..
[49] David Luengo,et al. Bayesian estimation of chaotic signals generated by piecewise-linear maps , 2003, Signal Process..
[50] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[51] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[52] Ja-Ling Wu,et al. Discrete cosine transform in error control coding , 1995, IEEE Trans. Commun..
[53] Venkatesh Nagesha,et al. Methods for chaotic signal estimation , 1995, IEEE Trans. Signal Process..
[54] Farokh Marvasti,et al. Robust decoding of DFT-based error-control codes for impulsive and additive white Gaussian noise channels , 2005 .
[55] Radford M. Neal,et al. Near Shannon limit performance of low density parity check codes , 1996 .
[56] Pierre Duhamel,et al. Joint Source-Channel Coding Using Real BCH Codes for Robust Image Transmission , 2007, IEEE Transactions on Image Processing.
[57] Daniel J. Costello,et al. New deterministic interleaver designs for turbo codes , 2000, IEEE Trans. Inf. Theory.
[58] A. Glavieux,et al. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.
[59] Grebogi,et al. Communicating with chaos. , 1993, Physical review letters.
[60] Chai Wah Wu,et al. A Simple Way to Synchronize Chaotic Systems with Applications to , 1993 .
[61] Leon O. Chua,et al. Transmission of Digital signals by Chaotic Synchronization , 1992, Chua's Circuit.
[62] David Luengo,et al. Bayesian estimation of a class of chaotic signals , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).
[63] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[64] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[65] S. S. Pietrobon,et al. Chaotic turbo codes , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[66] T. Marshall,et al. Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..
[67] Stephan ten Brink,et al. Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.
[68] Alexander Vardy,et al. Analog codes on graphs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..
[69] Anamitra Makur,et al. Improved Coding-Theoretic and Subspace-Based Decoding Algorithms for a Wider Class of DCT and DST Codes , 2010, IEEE Transactions on Signal Processing.