Immune genetic algorithm for scheduling service workflows with QoS constraints in cloud computing

Resources allocation and scheduling of service workflows is an important challenge in distributed computing. This is particularly true in a cloud computing environment, where many computer resources may be available at specified locations, as and when required. Quality-of-service (QoS) issues such as execution time and running costs must also be considered. Meeting this challenge requires that two classic computational problems be tackled. The first problem is allocating resources to each of the tasks in the composite web services or workflow. The second problem involves scheduling resources when each resource may be used by more than one task, and may be needed at different times. Existing approaches to scheduling workflows or composite web services in cloud computing focus only on reducing the constraint problem - such as the deadline constraint, or the cost constraint (bi-objective optimisation). This paper proposes a new genetic algorithm that solves a scheduling problem by considering more than two constraints (multi-objective optimisation). Experimental results demonstrate the effectiveness and scalability of the proposed algorithm. In verdeelde rekenaarverwerking is hulpbrontoewysing en skedulering van diens werkstrome 'n belangrike uitdaging, veral in 'n wolkrekenaar omgewing waar daar baie rekenaarhulpbronne beskikbaar is op bepaalde plekke. Daarbenewens moet die kwaliteit van die diens kwessies, soos uitvoertyd en bedryfskoste, in ag geneem word. Om hierdie uitdaging suksesvol te adresseer moet twee klassieke rekenaarverwerking probleme aangepak word: eerstens, die toekenning van hulpbronne aan elk van die take in die saamgestelde webdienste of werkstrome en tweedens die skedulering van hulpbronne wanneer elke hulpbron gebruik kan word deur meer as een taak en op verskillende tye nodig mag wees. Die bestaande benaderings vir die skedulering van werkstrome of saamgestelde webdienste in wolkverwerking fokus op die vermindering van die beperkingsprobleme, soos die sperdatum of die kostebeperking. Hierdie artikel stel 'n nuwe genetiese algoritme, wat die hulpbrontoewysing en skedulering probleem deur die oorweging van meer as twee beperkings oplos, voor. Eksperimentele resultate demonstreer die doeltreffendheid en skaalbaarheid van die voorgestelde algoritme.

[1]  Albert Y. Zomaya,et al.  Author manuscript, published in "Journal of Parallel and Distributed Computing (2011)" A Parallel Bi-objective Hybrid Metaheuristic for Energy-aware Scheduling for Cloud Computing Systems , 2011 .

[2]  Rajkumar Buyya,et al.  Optimizing the makespan and reliability for workflow applications with reputation and a look-ahead genetic algorithm , 2011, Future Gener. Comput. Syst..

[3]  ProdanRadu,et al.  Scheduling of scientific workflows in the ASKALON grid environment , 2005 .

[4]  Dharma P. Agrawal,et al.  Improving scheduling of tasks in a heterogeneous environment , 2004, IEEE Transactions on Parallel and Distributed Systems.

[5]  Rajkumar Buyya,et al.  Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms , 2006, Sci. Program..

[6]  Yong Zhao,et al.  Grid middleware services for virtual data discovery, composition, and integration , 2004, MGC '04.

[7]  Sameer Rajan,et al.  Cloud Computing: The Fifth Generation of Computing , 2011, 2011 International Conference on Communication Systems and Network Technologies.

[8]  John Darlington,et al.  Mapping of Scientific Workflow within the e-Protein project to Distributed Resources , 2004 .

[9]  Nirwan Ansari,et al.  A Genetic Algorithm for Multiprocessor Scheduling , 1994, IEEE Trans. Parallel Distributed Syst..

[10]  Dai Yongshou,et al.  Adaptive immune-genetic algorithm for global optimization to multivariable function * * This project , 2007 .

[11]  Rajkumar Buyya,et al.  A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow Applications in Cloud Computing Environments , 2010, 2010 24th IEEE International Conference on Advanced Information Networking and Applications.

[12]  Xiao Liu,et al.  A Revised Discrete Particle Swarm Optimization for Cloud Workflow Scheduling , 2010, 2010 International Conference on Computational Intelligence and Security.

[13]  Rajkumar Buyya,et al.  Workflow scheduling algorithms for grid computing , 2008 .

[14]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[15]  Albert Y. Zomaya,et al.  Genetic Scheduling for Parallel Processor Systems: Comparative Studies and Performance Issues , 1999, IEEE Trans. Parallel Distributed Syst..

[16]  R. Buyya,et al.  A budget constrained scheduling of workflow applications on utility Grids using genetic algorithms , 2006, 2006 Workshop on Workflows in Support of Large-Scale Science.

[17]  C. Peltz,et al.  Web Services Orchestration and Choreography , 2003, Computer.

[18]  Rajkumar Buyya,et al.  Multi-objective planning for workflow execution on Grids , 2007, 2007 8th IEEE/ACM International Conference on Grid Computing.

[19]  Radu Prodan,et al.  Scheduling of scientific workflows in the ASKALON grid environment , 2005, SGMD.

[20]  Yong Zhao,et al.  Cloud Computing and Grid Computing 360-Degree Compared , 2008, GCE 2008.