Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

The dominant error sources for state-of-the-art laser-free trapped-ion entangling gates are decoherence of the qubit state and the ion motion. The effect of these decoherence mechanisms can be suppressed with additional control fields, or with techniques that have the disadvantage of reducing gate speed. Here, we propose using a near-motional-frequency magnetic field gradient to implement a laser-free gate that is simultaneously resilient to both types of decoherence, does not require additional control fields, and has a relatively small cost in gate speed.

[1]  R. Werner,et al.  Robust and Resource-Efficient Microwave Near-Field Entangling ^{9}Be^{+} Gate. , 2019, Physical review letters.

[2]  C. Ospelkaus,et al.  Integrated 9Be+ multi-qubit gate device for the ion-trap quantum computer , 2019, npj Quantum Information.

[3]  A. C. Wilson,et al.  Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient. , 2018, Physical review letters.

[4]  A. C. Wilson,et al.  Versatile laser-free trapped-ion entangling gates , 2018, New journal of physics.

[5]  S. Webster,et al.  Resilient Entangling Gates for Trapped Ions. , 2018, Physical review letters.

[6]  R. Ozeri,et al.  Robust Entanglement Gates for Trapped-Ion Qubits. , 2018, Physical review letters.

[7]  Caroline Figgatt,et al.  Robust 2-Qubit Gates in a Linear Ion Crystal Using a Frequency-Modulated Driving Force. , 2017, Physical review letters.

[8]  T. Harty,et al.  High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves. , 2016, Physical review letters.

[9]  C. Wunderlich,et al.  Quantum dynamics of trapped ions in a dynamic field gradient using dressed states , 2016, 1606.04821.

[10]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[11]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[12]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[13]  F. Mintert,et al.  High fidelity quantum gates of trapped ions in the presence of motional heating , 2015, 1510.05814.

[14]  S. C. Webster,et al.  Efficient preparation and detection of microwave dressed-state qubits and qutrits with trapped ions , 2014, 1409.1696.

[15]  S. Webster,et al.  Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation , 2014, 1409.1862.

[16]  Michael J Biercuk,et al.  Phase-modulated decoupling and error suppression in qubit-oscillator systems. , 2014, Physical review letters.

[17]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[18]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[19]  M. Plenio,et al.  Robust trapped-ion quantum logic gates by continuous dynamical decoupling , 2011, 1110.1870.

[20]  M. Plenio,et al.  Quantum gates and memory using microwave-dressed states , 2011, Nature.

[21]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[22]  I. V. Inlek,et al.  Coherent error suppression in multiqubit entangling gates. , 2011, Physical review letters.

[23]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[24]  W. Lange Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[25]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[26]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[27]  J M Amini,et al.  Trapped-ion quantum logic gates based on oscillating magnetic fields. , 2008, Physical review letters.

[28]  N. Timoney,et al.  Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. , 2007, Physical review letters.

[29]  J. Chiaverini,et al.  Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays , 2007, 0711.0233.

[30]  Christian F. Roos,et al.  Ion trap quantum gates with amplitude-modulated laser beams , 2007, 0710.1204.

[31]  R. B. Blakestad,et al.  Errors in trapped-ion quantum gates due to spontaneous photon scattering , 2006, quant-ph/0611048.

[32]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[33]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[34]  M. B. Plenio,et al.  Fast quantum gates for cold trapped ions , 2000, quant-ph/0002092.

[35]  K. Mølmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000, quant-ph/0002024.

[36]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[37]  E. Knill,et al.  Dynamical Decoupling of Open Quantum Systems , 1998, Physical Review Letters.

[38]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[39]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[40]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[41]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[42]  P. Dürre,et al.  Quantum dynamics of trapped ions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[43]  J. W. Tukey,et al.  The Measurement of Power Spectra from the Point of View of Communications Engineering , 1958 .